Getting Started

Optuna Dashboard

Optuna Dashboard



Optuna Dashboard supports Python 3.7 or newer.

Installing from PyPi

You can install optuna-dashboard via PyPI or Anaconda Cloud.

$ pip install optuna-dashboard

Also, you can install following optional dependencies to make optuna-dashboard faster.

$ pip install optuna-fast-fanova gunicorn

Installing from the source code

Since it requires to build TypeScript files, pip install git+https://.../optuna-dashboard.git does not actually work. Please clone the git repository and execute following commands to build sdist package:

$ git clone
$ cd optuna
# Node.js v16 is required to compile TypeScript files.
$ npm install
$ npm run build:prd
$ python sdist

Then you can install it like:

$ pip install dist/optuna-dashboard-x.y.z.tar.gz

See for more details.

Command-line Interface

The most common usage of Optuna Dashboard is using the command-line interface. Assuming that Optuna’s optimization history is persisted using RDBStorage, you can use the command line interface like optuna-dashboard <STORAGE_URL>.

import optuna

def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x**2 + y

study = optuna.create_study(
    storage="sqlite:///db.sqlite3",  # Specify the storage URL here.
study.optimize(objective, n_trials=100)
print(f"Best value: {study.best_value} (params: {study.best_params})")
$ optuna-dashboard sqlite:///db.sqlite3
Listening on http://localhost:8080/
Hit Ctrl-C to quit.

If you are using JournalStorage classes introduced in Optuna v3.1, you can use them like below:

# JournalFileStorage
$ optuna-dashboard ./path/to/journal.log

# JournalRedisStorage
$ optuna-dashboard redis://localhost:6379

Using an official Docker image

You can also use an official Docker image instead of setting up your Python environment. The Docker image only supports SQLite3, MySQL(PyMySQL), and PostgreSQL(Psycopg2).


$ docker run -it --rm -p 8080:8080 -v `pwd`:/app -w /app sqlite:///db.sqlite3


$ docker run -it --rm -p 8080:8080 mysql+pymysql://username:password@hostname:3306/dbname

PostgreSQL (Psycopg2)

$ docker run -it --rm -p 8080:8080 postgresql+psycopg2://username:password@hostname:5432/dbname

Python Interface

Python interfaces are also provided for users who want to use other storage implementations (e.g. InMemoryStorage). You can use run_server() function like below:

import optuna
from optuna_dashboard import run_server

def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    y = trial.suggest_categorical("y", [-1, 0, 1])
    return x**2 + y

storage = optuna.storages.InMemoryStorage()
study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=100)


Using Gunicorn or uWSGI server

Optuna Dashboard uses wsgiref module, which is in the Python’s standard libraries, by default. However, as described here, wsgiref is implemented for testing or debugging purpose. You can switch to other WSGI server implementations by using wsgi() function.
from optuna.storages import RDBStorage
from optuna_dashboard import wsgi

storage = RDBStorage("sqlite:///db.sqlite3")
application = wsgi(storage)

Then please execute following commands to start.

$ pip install gunicorn
$ gunicorn --workers 4 wsgi:application


$ pip install uwsgi
$ uwsgi --http :8080 --workeers 4 --wsgi-file

Jupyter Lab Extension (Experimental)

You can install the Jupyter Lab extension via PyPI.

Screenshot for the Jupyter Lab Extension

Jupyter Lab Extension

To use, click the tile to launch the extension, and enter your Optuna’s storage URL (e.g. sqlite:///db.sqlite3) in the dialog.

Browser-only version (Experimental)

GIF animation for the browser-only version

Browser-only version of Optuna Dashboard, powered by Wasm.

We’ve developed the version that operates solely within your web browser. There’s no need to install Python or any other dependencies. Simply open the following URL in your browser, drag and drop your SQLite3 file onto the page, and you’re ready to view your Optuna studies!


Currently, only a subset of features is available. However, you can still check the optimization history, hyperparameter importances, and etc. in graphs and tables.

VS Code Extension (Experimental)

You can install the VS Code extension via Visual Studio Marketplace.

Screenshot for the VS Code Extension

VS Code Extension

To use, right-click the SQLite3 files (*.db or *.sqlite3) in the file explorer and select the “Open in Optuna Dashboard” from the dropdown menu. This extension leverages the browser-only version of Optuna Dashboard, so the same limitations apply.

Google Colaboratory

When you want to check the optimization history on Google Colaboratory, you can use google.colab.output() function as follows:

import optuna
import threading
from google.colab import output
from optuna_dashboard import run_server

def objective(trial):
    x = trial.suggest_float("x", -100, 100)
    return (x - 2) ** 2

# Run optimization
storage = optuna.storages.InMemoryStorage()
study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=100)

# Start Optuna Dashboard
port = 8081
thread = threading.Thread(target=run_server, args=(storage,), kwargs={"port": port})
output.serve_kernel_port_as_window(port, path='/dashboard/')

Then please open http://localhost:8081/dashboard to browse.