
Optuna Dashboard

Optuna Dashboard Contributors.

Mar 29, 2024

CONTENTS:

1 Getting Started 3
1.1 Installation . 3
1.2 Command-line Interface . 4
1.3 Using an official Docker image . 4
1.4 Python Interface . 5
1.5 Using Gunicorn or uWSGI server . 5
1.6 Jupyter Lab Extension (Experimental) . 6
1.7 Browser-only version (Experimental) . 6
1.8 VS Code and code-server Extension (Experimental) . 7
1.9 Google Colaboratory . 7

2 API Reference 9
2.1 General APIs . 9
2.2 Human-in-the-loop . 12
2.3 Streamlit . 28

3 Error Messages 31
3.1 Warning Messages . 31

4 Tutorials 33
4.1 Tutorial: Human-in-the-loop Optimization using Objective Form Widgets 33
4.2 Tutorial: Preferential Optimization . 45

5 LICENSE 49

6 Links 51

7 Indices and tables 53

Python Module Index 55

Index 57

i

ii

Optuna Dashboard

Real-time dashboard for Optuna.

CONTENTS: 1

https://github.com/optuna/optuna

Optuna Dashboard

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

Fig. 1: Optuna Dashboard

1.1 Installation

1.1.1 Prerequisite

Optuna Dashboard supports Python 3.7 or newer.

1.1.2 Installing from PyPI

You can install optuna-dashboard via PyPI or Anaconda Cloud.

$ pip install optuna-dashboard

Also, you can install following optional dependencies to make optuna-dashboard faster.

$ pip install optuna-fast-fanova gunicorn

1.1.3 Installing from the source code

Since it requires to build TypeScript files, pip install git+https://.../optuna-dashboard.git does not ac-
tually work. Please clone the git repository and execute following commands to build sdist package:

$ git clone git@github.com:optuna/optuna-dashboard.git
$ cd optuna

Node.js v16 is required to compile TypeScript files.
$ npm install
$ npm run build:prd
$ python -m build --sdist

Then you can install it like:

$ pip install dist/optuna-dashboard-x.y.z.tar.gz

See CONTRIBUTING.md for more details.

3

https://pypi.org/project/optuna-dashboard/
https://anaconda.org/conda-forge/optuna-dashboard
https://github.com/optuna/optuna/blob/master/CONTRIBUTING.md

Optuna Dashboard

1.2 Command-line Interface

The most common usage of Optuna Dashboard is using the command-line interface. Assuming that Optuna’s opti-
mization history is persisted using RDBStorage, you can use the command line interface like optuna-dashboard
<STORAGE_URL>.

import optuna

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x**2 + y

study = optuna.create_study(
storage="sqlite:///db.sqlite3", # Specify the storage URL here.
study_name="quadratic-simple"

)
study.optimize(objective, n_trials=100)
print(f"Best value: {study.best_value} (params: {study.best_params})")

$ optuna-dashboard sqlite:///db.sqlite3
Listening on http://localhost:8080/
Hit Ctrl-C to quit.

If you are using JournalStorage classes introduced in Optuna v3.1, you can use them like below:

JournalFileStorage
$ optuna-dashboard ./path/to/journal.log

JournalRedisStorage
$ optuna-dashboard redis://localhost:6379

1.3 Using an official Docker image

You can also use an official Docker image instead of setting up your Python environment. The Docker image only
supports SQLite3, MySQL(PyMySQL), and PostgreSQL(Psycopg2).

SQLite3

$ docker run -it --rm -p 8080:8080 -v `pwd`:/app -w /app ghcr.io/optuna/optuna-dashboard␣
→˓sqlite:///db.sqlite3

MySQL (PyMySQL)

$ docker run -it --rm -p 8080:8080 ghcr.io/optuna/optuna-dashboard mysql+pymysql://
→˓username:password@hostname:3306/dbname

PostgreSQL (Psycopg2)

$ docker run -it --rm -p 8080:8080 ghcr.io/optuna/optuna-dashboard postgresql+psycopg2://
→˓username:password@hostname:5432/dbname

4 Chapter 1. Getting Started

https://github.com/optuna/optuna-dashboard/pkgs/container/optuna-dashboard

Optuna Dashboard

1.4 Python Interface

Python interfaces are also provided for users who want to use other storage implementations (e.g. InMemoryStorage).
You can use run_server() function like below:

import optuna
from optuna_dashboard import run_server

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x**2 + y

storage = optuna.storages.InMemoryStorage()
study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=100)

run_server(storage)

1.5 Using Gunicorn or uWSGI server

Optuna Dashboard uses wsgiref module, which is in the Python’s standard libraries, by default. However, as described
here, wsgiref is implemented for testing or debugging purpose. You can switch to other WSGI server implementations
by using wsgi() function.

Listing 1: wsgi.py

from optuna.storages import RDBStorage
from optuna_dashboard import wsgi

storage = RDBStorage("sqlite:///db.sqlite3")
application = wsgi(storage)

Then please execute following commands to start.

$ pip install gunicorn
$ gunicorn --workers 4 wsgi:application

or

$ pip install uwsgi
$ uwsgi --http :8080 --workeers 4 --wsgi-file wsgi.py

1.4. Python Interface 5

https://docs.python.org/3/library/wsgiref.html
https://github.com/python/cpython/blob/v3.11.0/Lib/wsgiref/simple_server.py#L3-L7

Optuna Dashboard

1.6 Jupyter Lab Extension (Experimental)

You can install the Jupyter Lab extension via PyPI.

Fig. 2: Jupyter Lab Extension

To use, click the tile to launch the extension, and enter your Optuna’s storage URL (e.g. sqlite:///db.sqlite3) in
the dialog.

1.7 Browser-only version (Experimental)

Fig. 3: Browser-only version of Optuna Dashboard, powered by Wasm.

We’ve developed the version that operates solely within your web browser. There’s no need to install Python or any
other dependencies. Simply open the following URL in your browser, drag and drop your SQLite3 file onto the page,
and you’re ready to view your Optuna studies!

https://optuna.github.io/optuna-dashboard/

Warning: Currently, only a subset of features is available. However, you can still check the optimization history,
hyperparameter importances, and etc. in graphs and tables.

6 Chapter 1. Getting Started

https://pypi.org/project/jupyterlab-optuna/
https://optuna.github.io/optuna-dashboard/

Optuna Dashboard

1.8 VS Code and code-server Extension (Experimental)

You can install the VS Code extension via Visual Studio Marketplace, or install the code-server extension via Open
VSX.

Fig. 4: VS Code Extension

To use, right-click the SQLite3 files (*.db or *.sqlite3) in the file explorer and select the “Open in Optuna Dash-
board” from the dropdown menu. This extension leverages the browser-only version of Optuna Dashboard, so the same
limitations apply.

1.9 Google Colaboratory

When you want to check the optimization history on Google Colaboratory, you can use google.colab.output()
function as follows:

import optuna
import threading
from google.colab import output
from optuna_dashboard import run_server

def objective(trial):
x = trial.suggest_float("x", -100, 100)

(continues on next page)

1.8. VS Code and code-server Extension (Experimental) 7

https://marketplace.visualstudio.com/items?itemName=Optuna.optuna-dashboard#overview
https://open-vsx.org/extension/Optuna/optuna-dashboard
https://open-vsx.org/extension/Optuna/optuna-dashboard

Optuna Dashboard

(continued from previous page)

return (x - 2) ** 2

Run optimization
storage = optuna.storages.InMemoryStorage()
study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=100)

Start Optuna Dashboard
port = 8081
thread = threading.Thread(target=run_server, args=(storage,), kwargs={"port": port})
thread.start()
output.serve_kernel_port_as_window(port, path='/dashboard/')

Then please open http://localhost:8081/dashboard to browse.

8 Chapter 1. Getting Started

http://localhost:8081/dashboard

CHAPTER

TWO

API REFERENCE

2.1 General APIs

optuna_dashboard.run_server Start running optuna-dashboard and blocks until the
server terminates.

optuna_dashboard.wsgi This function exposes WSGI interface for people who
want to run on the production-class WSGI servers like
Gunicorn or uWSGI.

optuna_dashboard.save_note Save the note (Markdown format) to the Study or Trial.
optuna_dashboard.save_plotly_graph_object Save the user-defined plotly's graph object to the study.
optuna_dashboard.artifact.
get_artifact_path

Get the URL path for a given artifact ID.

2.1.1 optuna_dashboard.run_server

optuna_dashboard.run_server(storage, host='localhost', port=8080, artifact_store=None, *,
artifact_backend=None)

Start running optuna-dashboard and blocks until the server terminates.

This function uses wsgiref module which is not intended for the production use. If you want to run optuna-
dashboard more secure and/or more fast, please use WSGI server like Gunicorn or uWSGI via wsgi() function.

Parameters
• storage (Union[str, BaseStorage]) –

• host (str) –

• port (int) –

• artifact_store (Optional[ArtifactStore | ArtifactBackend]) –

• artifact_backend (Optional[ArtifactBackend]) –

Return type
None

9

Optuna Dashboard

2.1.2 optuna_dashboard.wsgi

optuna_dashboard.wsgi(storage, artifact_store=None, *, artifact_backend=None)
This function exposes WSGI interface for people who want to run on the production-class WSGI servers like
Gunicorn or uWSGI.

Parameters
• storage (Union[str, BaseStorage]) –

• artifact_store (Optional[ArtifactBackend | ArtifactStore]) –

• artifact_backend (Optional[ArtifactBackend]) –

Return type
WSGIApplication

2.1.3 optuna_dashboard.save_note

optuna_dashboard.save_note(study_or_trial, body)
Save the note (Markdown format) to the Study or Trial.

Example

import optuna
from optuna_dashboard import save_note

def objective(trial: optuna.Trial) -> float:
x1 = trial.suggest_float("x1", 0, 10)

save_note(trial, textwrap.dedent(f''' ## Trial {trial.number}

You can *freely* take a **note** that is associated with the Trial.
'''))
return (x1 - 2) ** 2

study = optuna.create_study()
save_note(study, textwrap.dedent(f''' ## {study.study_name}

You can *freely* take a **note** that is associated with the study.
'''))
study.optimize(objective, n_trials=10)

Parameters
• study_or_trial (Study | Trial) –

• body (str) –

Return type
None

10 Chapter 2. API Reference

Optuna Dashboard

2.1.4 optuna_dashboard.save_plotly_graph_object

optuna_dashboard.save_plotly_graph_object(study, figure, *, graph_object_id=None)
Save the user-defined plotly’s graph object to the study.

Example

import optuna
from optuna_dashboard import save_plotly_graph_object

def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x**2 + y

study = optuna.create_study()
study.optimize(objective, n_trials=100)

figure = optuna.visualization.plot_optimization_history(study)
save_plotly_graph_object(study, figure)

Parameters
• study (Study) – Target study object.

• plot_data – The plotly’s graph object to save.

• graph_object_id (str | None) – Unique identifier of the graph object. If specified, the
graph object is overwritten. This must be a valid HTML id attribute value.

• figure (go.Figure) –

Returns
The graph object ID.

Return type
str

2.1.5 optuna_dashboard.artifact.get_artifact_path

optuna_dashboard.artifact.get_artifact_path(study_or_trial, artifact_id)
Get the URL path for a given artifact ID.

Parameters
• study_or_trial (Trial | Study) – A Trial object, or a Study object.

• artifact_id (str) – An artifact ID.

Returns
A URL path to the artifact.

Return type
str

2.1. General APIs 11

Optuna Dashboard

2.2 Human-in-the-loop

2.2.1 Form Widgets

optuna_dashboard.register_objective_form_widgetsRegister a list of form widgets to an Optuna study.
optuna_dashboard.register_user_attr_form_widgetsRegister a list of form widgets to an Optuna study.
optuna_dashboard.dict_to_form_widget Restore form widget objects from the dictionary.
optuna_dashboard.ChoiceWidget A widget representing a choice with associated values.
optuna_dashboard.SliderWidget A widget representing a slider for selecting a value

within a range.
optuna_dashboard.TextInputWidget A text input widget class that defines a text input field.
optuna_dashboard.ObjectiveUserAttrRef A class representing a reference to a value of

trial.user_attrs.

optuna_dashboard.register_objective_form_widgets

optuna_dashboard.register_objective_form_widgets(study, widgets)
Register a list of form widgets to an Optuna study.

Submitted values to the forms are told as each trial’s objective values.

Parameters
• study (Study) – The Optuna study object to register the form widgets for.

• widgets (list[ChoiceWidget | SliderWidget | TextInputWidget |
ObjectiveUserAttrRef]) – A list of ObjectiveFormWidget objects to be registered
in the study.

Raises
• ValueError – If the length of study directions is not equal to the length of widgets.

• Warning – If any widget has user_attr_key specified, but it will not be used.

Return type
None

Examples

import optuna
from optuna_dashboard import ChoiceWidget, SliderWidget
from optuna_dashboard import register_objective_form_widgets

study = optuna.create_study()
register_objective_form_widgets(

study,
widgets=[

ObjectiveChoiceWidget(
choices=["Good ", "Bad "],
values=[-1, 1],
description="Please input your score!",

(continues on next page)

12 Chapter 2. API Reference

Optuna Dashboard

(continued from previous page)

),
ObjectiveSliderWidget(

min=1,
max=10,
step=1,
description="Higher is better.",

),
],

)

optuna_dashboard.register_user_attr_form_widgets

optuna_dashboard.register_user_attr_form_widgets(study, widgets)
Register a list of form widgets to an Optuna study.

Submitted values to the forms are registered as each trial’s user_attrs.

Parameters
• study (Study) – The Optuna study object to register the form widgets for.

• widgets (list[ChoiceWidget | SliderWidget | TextInputWidget |
ObjectiveUserAttrRef]) – A list of ObjectiveFormWidget objects to be registered
in the study.

Raises
• ValueError – If an ObjectiveUserAttrRef is specified or if user_attr_key is not specified.

• ValueError – If user_attr_key is not unique for each widget.

Return type
None

Examples

import optuna
from optuna_dashboard import ChoiceWidget, SliderWidget
from optuna_dashboard import register_user_attr_form_widgets

study = optuna.create_study()
register_user_attr_form_widgets(

study,
widgets=[

ChoiceWidget(
choices=["Good ", "Bad "],
values=[-1, 1],
description="Please input your score!",
user_attr_key="hitl/choice",

),
SliderWidget(

min=1,
max=10,

(continues on next page)

2.2. Human-in-the-loop 13

Optuna Dashboard

(continued from previous page)

step=1,
description="Higher is better.",
user_attr_key="hitl/slider",

),
],

)

optuna_dashboard.dict_to_form_widget

optuna_dashboard.dict_to_form_widget(d)
Restore form widget objects from the dictionary.

Parameters
d (dict[str, Any]) – A dictionary object.

Returns
an instance of the restored form widget class.

Return type
object

optuna_dashboard.ChoiceWidget

class optuna_dashboard.ChoiceWidget(choices, values, description=None, user_attr_key=None)
A widget representing a choice with associated values.

Parameters
• choices (list[str]) – A list of strings representing the available choices.

• values (list[float]) – A list of float values associated with each choice.

• description (Optional[str]) – A description of the widget. Defaults to None.

• user_attr_key (Optional[str]) – The key used by register_user_attr_form_widgets.
Form output is saved as trial.user_attrs[user_attr_key]. Defaults to None.

Example

from optuna_dashboard import ChoiceWidget

choice_widget = ChoiceWidget(
choices=["A", "B", "C"], values=[1.0, 2.0, 3.0], description="Choose one"

)

14 Chapter 2. API Reference

Optuna Dashboard

Methods

to_dict() Convert the ChoiceWidget object to a dictionary.

Attributes

description

user_attr_key

choices

values

to_dict()

Convert the ChoiceWidget object to a dictionary.

Returns
A dictionary representing the ChoiceWidget object.

Return type
ChoiceWidgetJSON

optuna_dashboard.SliderWidget

class optuna_dashboard.SliderWidget(min, max, step=None, labels=None, description=None,
user_attr_key=None)

A widget representing a slider for selecting a value within a range.

Parameters
• min (float) – The minimum value of the slider.

• max (float) – The maximum value of the slider.

• step (Optional[float]) – The step size for the slider. Defaults to None.

• labels (Optional[list[tuple[float, str]]]) – A list of tuples containing value and
label for the slider. Defaults to None.

• description (Optional[str]) – A description for the slider. Defaults to None.

• user_attr_key (Optional[str]) – The key used by register_user_attr_form_widgets.
Form output is saved as trial.user_attrs[user_attr_key]. Defaults to None.

2.2. Human-in-the-loop 15

Optuna Dashboard

Example

from optuna_dashboard import SliderWidget

slide_widget = SliderWidget(min=0, max=10, step=1, description="Example slider")

Methods

to_dict() Convert the SliderWidget instance to a dictionary.

Attributes

description

labels

step

user_attr_key

min

max

to_dict()

Convert the SliderWidget instance to a dictionary.

Returns
A dictionary representation of the SliderWidget instance.

Return type
SliderWidgetJSON

optuna_dashboard.TextInputWidget

class optuna_dashboard.TextInputWidget(description=None, user_attr_key=None, optional=False)
A text input widget class that defines a text input field.

Parameters
• description (Optional[str]) – A description of the text input field.

• user_attr_key (Optional[str]) – The key used by register_user_attr_form_widgets.
Form output is saved as trial.user_attrs[user_attr_key]. Defaults to None.

• optional (bool) – If True, an empty string is acceptable.

16 Chapter 2. API Reference

Optuna Dashboard

Example

from optuna_dashboard import TextInputWidget

text_input = TextInputWidget(description="Text Input Example")

Methods

to_dict() Converts the TextInputWidget instance to a dictio-
nary representation.

Attributes

description

optional

user_attr_key

to_dict()

Converts the TextInputWidget instance to a dictionary representation.

Returns
The dictionary representation of the TextInputWidget instance.

Return type
TextInputWidgetJSON

optuna_dashboard.ObjectiveUserAttrRef

class optuna_dashboard.ObjectiveUserAttrRef(key)
A class representing a reference to a value of trial.user_attrs. When combined with regis-
ter_objective_form_widgets, users can tell values that are registered to trial.user_attrs during the human-
in-the-loop optimization.

Parameters
key (str) – The key of trial.user_attrs being referenced.

2.2. Human-in-the-loop 17

Optuna Dashboard

Example

from optuna_dashboard import ObjectiveUserAttrRef

user_attr_ref = ObjectiveUserAttrRef(key="key")

Methods

to_dict() Converts the ObjectiveUserAttrRef instance to a dic-
tionary representation.

Attributes

key

to_dict()

Converts the ObjectiveUserAttrRef instance to a dictionary representation.

Returns
The dictionary representation of the ObjectiveUserAttrRef instance.

Return type
UserAttrRefJSON

2.2.2 Preferential Optimization

optuna_dashboard.preferential.create_study Like optuna.create_study(), but for preferential op-
timization.

optuna_dashboard.preferential.load_study Like optuna.load_study(), but for preferential opti-
mization.

optuna_dashboard.preferential.
PreferentialStudy

A Study-like class for preferential optimization.

optuna_dashboard.preferential.samplers.gp.
PreferentialGPSampler

Sampler for preferential optimization using Gaussian
process.

optuna_dashboard.register_preference_feedback_componentRegister a preference feedback component to the study.

18 Chapter 2. API Reference

Optuna Dashboard

optuna_dashboard.preferential.create_study

optuna_dashboard.preferential.create_study(*, n_generate, storage=None, sampler=None,
study_name=None, load_if_exists=False)

Like optuna.create_study(), but for preferential optimization.

Example

import optuna
from optuna_dashboard.preferential import create_study

study = create_study()
trial = study.ask()

Parameters
• n_generate (int) – The number of active trials to keep. should_generate() returns
True if the number of trials not reported bad and not skipped are less than n_generate.

• storage (str | BaseStorage | None) – Database URL. If this argument is set to None,
in-memory storage is used, and the PreferentialStudy will not be persistent.

• sampler (BaseSampler | None) – A sampler object that implements background algo-
rithm for value suggestion. If None is specified, PreferentialGPSampler is used. Please
note that most Optuna samplers does not work efficiently for preferential optimization.

• study_name (str | None) – Study’s name. If this argument is set to None, a unique name
is generated automatically.

• load_if_exists (bool) – Flag to control the behavior to handle a conflict of study
names. In the case where a study named study_name already exists in the storage, a
DuplicatedStudyError is raised if load_if_exists is set to False. Otherwise, the
creation of the study is skipped, and the existing one is returned.

Returns
A PreferentialStudy object.

Return type
PreferentialStudy

Note: Preferential optimization is an experimental feature (introduced in v0.13.0). The interface may change in
newer versions without prior notice.

2.2. Human-in-the-loop 19

Optuna Dashboard

optuna_dashboard.preferential.load_study

optuna_dashboard.preferential.load_study(*, study_name, storage, sampler=None)
Like optuna.load_study(), but for preferential optimization.

Example

import optuna
from optuna_dashboard.preferential import create_study
from optuna_dashboard.preferential import load_study

study = create_study(storage="sqlite:///example.db", study_name="my_study")
study.ask()

loaded_study = load_study(study_name="my_study", storage="sqlite:///example.db")
assert len(loaded_study.trials) == len(study.trials)

Parameters
• study_name (str | None) – Study’s name. Each study has a unique name as an identi-

fier. If None, checks whether the storage contains a single study, and if so loads that study.
study_name is required if there are multiple studies in the storage.

• storage (str | BaseStorage) – Database URL such as sqlite:///example.db.
Please see also the documentation of create_study() for further details.

• sampler (BaseSampler | None) – A sampler object that implements background algo-
rithm for value suggestion. If None is specified, PreferentialGPSampler is used. Please
note that most Optuna samplers does not work efficiently for preferential optimization.

Returns
A PreferentialStudy object.

Return type
PreferentialStudy

Note: Preferential optimization is an experimental feature (introduced in v0.13.0). The interface may change in
newer versions without prior notice.

optuna_dashboard.preferential.PreferentialStudy

class optuna_dashboard.preferential.PreferentialStudy(study)
A Study-like class for preferential optimization.

This object provides interfaces to create a new Trial, set/get results of pairwise comparison called preferences.

Note that the direct use of this constructor is not recommended. To create and load a study, please refer to the
documentation of create_study() and load_study() respectively.

Note: Preferential optimization is an experimental feature (introduced in v0.13.0). The interface may change in
newer versions without prior notice.

20 Chapter 2. API Reference

https://optuna.readthedocs.io/en/stable/reference/generated/optuna.trial.Trial.html#optuna.trial.Trial

Optuna Dashboard

Methods

add_trial(trial) Add a trial to the study.
add_trials(trials) Add trials to the study.
ask([fixed_distributions]) Create a new trial from which hyperparameters can

be suggested.
enqueue_trial(params[, user_attrs, ...]) Enqueue a trial with given parameter values.
get_preferences(*[, deepcopy]) Return results of pairwise comparison.
get_trials([deepcopy, states]) Return the trials that is not dominated by other trials.
report_preference(better_trials, worse_trials) Report results of pairwise comparison.
set_user_attr(key, value) Set a user attribute to the study.
should_generate() Return whether the generator should generate a new

trial now.

Attributes

best_trials Return the trials that is not dominated by other trials.
preferences Return results of pairwise comparison.
study_name Return the name of the study.
trials Return the all trials.
user_attrs Return user attributes of the study.

Parameters
study (optuna.Study) –

add_trial(trial)
Add a trial to the study.

See also:
See Study.add_trials() for details.

Parameters
trial (FrozenTrial) –

Return type
None

add_trials(trials)
Add trials to the study.

See also:
See Study.add_trials() for details.

Parameters
trials (Iterable[FrozenTrial]) –

Return type
None

2.2. Human-in-the-loop 21

https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.add_trials
https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.add_trials

Optuna Dashboard

ask(fixed_distributions=None)
Create a new trial from which hyperparameters can be suggested.

See also:
See Study.ask for details.

Parameters
fixed_distributions (dict[str, BaseDistribution] | None) – A dictionary con-
taining the parameter names and parameter’s distributions. Each parameter in this dictionary
is automatically suggested for the returned trial, even when the suggest method is not ex-
plicitly invoked by the user. If this argument is set to None, no parameter is automatically
suggested.

Returns
A Trial object.

Return type
Trial

property best_trials: list[FrozenTrial]

Return the trials that is not dominated by other trials.

Returns
A list of FrozenTrial object

enqueue_trial(params, user_attrs=None, skip_if_exists=False)
Enqueue a trial with given parameter values.

You can fix the next sampling parameters which will be evaluated in your objective function.

See also:
See `Study.enqueue_trials`_ for details.

Parameters
• params (dict[str, Any]) – Parameter values to pass your objective function.

• user_attrs (dict[str, Any] | None) – A dictionary of user-specific attributes other
than params.

• skip_if_exists (bool) – When True, prevents duplicate trials from being enqueued
again.

Note: This method might produce duplicated trials if called simultaneously by multiple
processes at the same time with same params dict.

Return type
None

get_preferences(*, deepcopy=True)
Return results of pairwise comparison.

Parameters
deepcopy (bool) – Flag to control whether to apply copy.deepcopy() to the trials. Note
that if you set the flag to False, you shouldn’t mutate any fields of the returned trial. Other-
wise the internal state of the study may corrupt and unexpected behavior may happen.

22 Chapter 2. API Reference

https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.ask

Optuna Dashboard

Returns
A list of the pair of FrozenTrial objects. The left trial is better than the right one.

Return type
list[tuple[FrozenTrial, FrozenTrial]]

get_trials(deepcopy=True, states=None)
Return the trials that is not dominated by other trials.

See also:
See `Study.get_trials`_ for details.

Parameters
• deepcopy (bool) – Flag to control whether to apply copy.deepcopy() to the trials. Note

that if you set the flag to False, you shouldn’t mutate any fields of the returned trial.
Otherwise the internal state of the study may corrupt and unexpected behavior may happen.

• states (Container[TrialState] | None) – Trial states to filter on. If None, include
all states.

Returns
A list of FrozenTrial object

Return type
list[FrozenTrial]

property preferences: list[tuple[FrozenTrial, FrozenTrial]]

Return results of pairwise comparison.

Returns
A list of the pair of FrozenTrial objects. The left trial is better than the right one.

report_preference(better_trials, worse_trials)
Report results of pairwise comparison.

Parameters
• better_trials (FrozenTrial | list[FrozenTrial]) – Trials that are better than

worse_trials.

• worse_trials (FrozenTrial | list[FrozenTrial]) – Trials that are worse than
better_trials.

Return type
None

set_user_attr(key, value)
Set a user attribute to the study.

Parameters
• key (str) – A key string of the attribute.

• value (Any) – A value of the attribute. The value should be JSON serializable.

Return type
None

See also:
See the tutorial for user attributes on Optuna’s documentation.

2.2. Human-in-the-loop 23

https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/003_attributes.html

Optuna Dashboard

should_generate()

Return whether the generator should generate a new trial now.

Returns True if the number of trials not reported bad and not skipped are less than n_generate. Users
are recommended to generate a new trial if this method returns True, and to wait for human evaluation if
this method returns False.

Return type
bool

property study_name: str

Return the name of the study.

Returns
A string object

property trials: list[FrozenTrial]

Return the all trials.

See also:
See Study.trials for details.

Returns
A list of FrozenTrial object

property user_attrs: dict[str, Any]

Return user attributes of the study.

See also:
See Study.user_attrs for details.

Returns
A dictionary containing all user attributes

optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler

class optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler(*, kernel=None,
noise_prior=None, inde-
pendent_sampler=None,
seed=None)

Sampler for preferential optimization using Gaussian process.

The sampling algorithm is based on Takeno et al., 2023. This sampler uses BoTorch to optimize acquisition
function.

Parameters
• kernel (gpytorch.kernels.Kernel | None) – Kernel that computes the covariance on

the Gaussian process. Defaults to Matern 3/2 Kernel + ARD.

• noise_prior (Prior | None) – Prior of the observation noise. Defaults to gamma prior.

• independent_sampler (optuna.samplers.BaseSampler | None) – A BaseSampler
instance that is used for independent sampling. The parameters not contained in the relative
search space are sampled by this sampler. If None is specified, RandomSampler is used as
the default.

• seed (int | None) – Seed for random number generator.

24 Chapter 2. API Reference

https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.trials
https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.user_attrs
https://arxiv.org/abs/2302.01513

Optuna Dashboard

Methods

after_trial(study, trial, state, values) Trial post-processing.
before_trial(study, trial) Trial pre-processing.
infer_relative_search_space(study, trial) Infer the search space that will be used by relative

sampling in the target trial.
reseed_rng() Reseed sampler's random number generator.
sample_independent(study, trial, param_name,
...)

Sample a parameter for a given distribution.

sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial(study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trial is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• state (TrialState) – Resulting trial state.

• values (Sequence[float] | None) – Resulting trial values. Guaranteed to not be None
if trial succeeded.

Return type
None

before_trial(study, trial)
Trial pre-processing.

This method is called before the objective function is called and right after the trial is instantiated. More pre-
cisely, this method is called during trial initialization, just before the infer_relative_search_space()
call. In other words, it is responsible for pre-processing that should be done before inferring the search
space.

Note: Added in v3.3.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object.

Return type
None

2.2. Human-in-the-loop 25

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v3.3.0

Optuna Dashboard

infer_relative_search_space(study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative() method, and the search space returned by this
method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent() method.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

Returns
A dictionary containing the parameter names and parameter’s distributions.

Return type
dict[str, BaseDistribution]

See also:
Please refer to intersection_search_space() as an implementation of
infer_relative_search_space().

reseed_rng()

Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type
None

sample_independent(study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative()method. This method is suitable for sampling algorithms that do not use relationship
between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• param_name (str) – Name of the sampled parameter.

• param_distribution (BaseDistribution) – Distribution object that specifies a prior
and/or scale of the sampling algorithm.

Returns
A parameter value.

Return type
Any

26 Chapter 2. API Reference

Optuna Dashboard

sample_relative(study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
• study (Study) – Target study object.

• trial (FrozenTrial) – Target trial object. Take a copy before modifying this object.

• search_space (dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

Returns
A dictionary containing the parameter names and the values.

Return type
dict[str, Any]

optuna_dashboard.register_preference_feedback_component

optuna_dashboard.register_preference_feedback_component(study, component_type,
artifact_key=None)

Register a preference feedback component to the study.

With this feature, you can change the component, displayed on the human feedback pages. By default, the
Markdown note (component_type="note") is displayed. If you specify component_type="artifact", the
viewer for the specified artifact file will be displayed.

Parameters
• study (PreferentialStudy) – The study to register the preference feedback component.

• component_type (OUTPUT_COMPONENT_TYPE) – The component type, displayed on the
human feedback pages (default: "note").

• user_attr_artifact_key – This option is required when the component_type is
"artifact". The user attribute, which is specified this field, must contain the ``artifact``id
you want to display on the human feedback page.

• artifact_key (str | None) –

Return type
None

2.2. Human-in-the-loop 27

Optuna Dashboard

2.3 Streamlit

optuna_dashboard.streamlit.
render_trial_note

Write a trial note to UI with streamlit as a markdown
format.

optuna_dashboard.streamlit.
render_objective_form_widgets

Render user input widgets to UI with streamlit.

optuna_dashboard.streamlit.
render_user_attr_form_widgets

Render user input widgets to UI with streamlit.

2.3.1 optuna_dashboard.streamlit.render_trial_note

optuna_dashboard.streamlit.render_trial_note(study, trial)
Write a trial note to UI with streamlit as a markdown format.

Parameters
• study (Study) – The optuna study object.

• trial (FrozenTrial) – The optuna trial object to get note.

Return type
None

2.3.2 optuna_dashboard.streamlit.render_objective_form_widgets

optuna_dashboard.streamlit.render_objective_form_widgets(study, trial, on_success_callback=None)
Render user input widgets to UI with streamlit.

Submitted values to the forms are telled to optuna trial object. All submitted values should be float. Multiple
widgets correspond to multi-objective optimization.

Parameters
• study (optuna.Study) – The optuna study object to get widget specification.

• trial (FrozenTrial) – The optuna trial object to tell user feedbacks.

• on_success_callback (Optional[Callable[[], None]]) – The callback function
which will be executed when feedback submission is succeeded.

Raises
• ValueError – If No form widgets registered.

• ValueError – If ‘output_type’ of form widgets is not ‘objective’.

• ValueError – If any submitted values cannot be converted to float.

Return type
None

28 Chapter 2. API Reference

Optuna Dashboard

2.3.3 optuna_dashboard.streamlit.render_user_attr_form_widgets

optuna_dashboard.streamlit.render_user_attr_form_widgets(study, trial, on_success_callback=None)
Render user input widgets to UI with streamlit.

Submitted values to the forms are registered as each trial’s user_attrs.

Parameters
• study (optuna.Study) – The optuna study object to get widget specification.

• trial (FrozenTrial) – The optuna trial object to save user feedbacks.

• on_success_callback (Optional[Callable[[], None]]) – The callback function
which will be executed when feedback submission is succeeded.

Raises
• ValueError – If No form widgets registered.

• ValueError – If ‘output_type’ of form widgets is not ‘user_attr’.

Return type
None

2.3. Streamlit 29

Optuna Dashboard

30 Chapter 2. API Reference

CHAPTER

THREE

ERROR MESSAGES

This section lists descriptions and background for common error messages and warnings raised or emitted by Optuna
Dashboard.

3.1 Warning Messages

3.1.1 Human-in-the-loop optimization will not work with _CachedStorage in Optuna
prior to v3.2.

This warning occurs when the storage object associated with the Optuna Study is of the _CachedStorage class.

When using RDBStorage with Optuna, it is implicitly wrapped with the _CachedStorage class for performance
improvement. However, there is a bug in the _CachedStorage class that prevents Optuna from synchronizing the
latest Trial information. This bug is not a problem for the general use case of Optuna, but it is critical for human-in-
the-loop optimization.

If you are using a version prior to v3.2, please upgrade to v3.2 or later, use another storage classes, or use a following
dirty hack to unwrap _CachedStorage class.

if isinstance(study._storage, optuna.storages._CachedStorage):
study._storage = study._storage._backend

3.1.2 set_objective_names() function is deprecated. Please use study.
set_metric_names() instead.

set_objective_names function has been ported to Optuna. Please use study.set_metric_names() function instead.

Deprecated APIs Corresponding Active APIs
optuna_dashboard.set_objective_names(study,
["objective 1", "objective 2"])

study.set_metric_names(["objective
1", "objective 2"])

31

https://optuna.readthedocs.io/en/latest/reference/generated/optuna.study.Study.html#optuna.study.Study

Optuna Dashboard

3.1.3 upload_artifact() is deprecated. Please use optuna.artifacts.
upload_artifact() instead.

upload_artifact function has been ported to Optuna. Please use optuna.artifacts.upload_artifact function instead.

Deprecated APIs Corresponding Active APIs
optuna_dashboard.artifact.
upload_artifact(artifact_backend, trial,
fiel_path)

optuna.artifacts.upload_artifact(trial,
file_path, artifact_store)

Please note that the order of arguments is different between the deprecated and active APIs.

3.1.4 FileSystemBackend is deprecated. Please use FileSystemArtifactStore in-
stead.

FileSystemBackend class has been ported to Optuna. Please use FileSystemArtifactStore class instead.

Deprecated APIs Corresponding Active APIs
optuna_dashboard.artifact.file_system.
FileSystemBackend(base_path)

optuna.artifacts.
FileSystemArtifactStore(base_path)

3.1.5 Boto3Backend` is deprecated. Please use Boto3ArtifactStore instead.

Boto3Backend class has been ported to Optuna. Please use Boto3ArtifactStore class instead.

Deprecated APIs Corresponding Active APIs
optuna_dashboard.artifact.boto3.
Boto3Backend(bucket_name, client=None)

optuna.artifacts.
Boto3ArtifactStore(bucket_name,
client=None)

32 Chapter 3. Error Messages

https://optuna.readthedocs.io/en/latest/reference/generated/optuna.artifacts.upload_artifact.html
https://optuna.readthedocs.io/en/latest/reference/generated/optuna.artifacts.FileSystemArtifactStore.html
https://optuna.readthedocs.io/en/latest/reference/generated/optuna.artifacts.Boto3ArtifactStore.html

CHAPTER

FOUR

TUTORIALS

4.1 Tutorial: Human-in-the-loop Optimization using Objective Form
Widgets

In tasks involving image generation, natural language, or speech synthesis, evaluating results mechanically can be
tough, and human evaluation becomes crucial. Until now, managing such tasks with Optuna has been challenging.
However, the introduction of Optuna Dashboard enables humans and optimization algorithms to work interactively
and execute the optimization process.

In this tutorial, we will explain how to optimize hyperparameters to generate a simple image using Optuna Dashboard.
While the tutorial focuses on a simple task, the same approach can be applied to for instance optimize more complex
images, natural language, and speech.

The tutorial is organized as follows:

• What is human-in-the-loop optimization?

33

Optuna Dashboard

• Main tutorial

– Theme

– System architecture

– Steps

– Script explanation

4.1.1 What is human-in-the-loop optimization?

Human-in-the-loop (HITL) is a concept where humans play a role in machine learning or artificial intelligence systems.
In HITL optimization in particular, humans are part of the optimization process. This is useful when it’s difficult for
machines to evaluate the results and human evaluation is crucial. In such cases, humans will assess the results instead.

Generally, HITL optimization involves the following steps:

1. An output is computed given the hyperparameters suggested by an optimization algorithm

2. An evaluator (human) evaluates the output

Steps 1 to 2 are repeated to find the best hyperparameters.

HITL optimization is valuable in areas where human judgment is essential, like art and design, since it’s hard for
machines to evaluate the output. For instance, it can optimize images created by generative models or improve cooking
methods and ingredients for foods like coffee.

4.1.2 Main tutorial

Theme

In this tutorial, we will interactively optimize RGB values between 0 and 255 to generate a color that the user perceives
as the “color of the sunset.” If someone already knows the RGB hyperparameter characteristics for their ideal “color
of the sunset,” they can specify those values directly. However, even without knowing such characteristics, interactive
optimization allows us to find good hyperparameters. Although the task is simple, this serves as a practical introduc-
tion to human-in-the-loop optimization, and can be applied to image generation, natural language generation, speech
synthesis, and more.

34 Chapter 4. Tutorials

Optuna Dashboard

To implement HITL optimization, you need a way to interactively execute the optimization process, typically through
a user interface (UI) or other means. Usually, users would have to implement their own, but with Optuna Dashboard,
everything is already set up for you. This is a major advantage of using Optuna Dashboard for this purpose.

System architecture

The system architecture for this tutorial’s example is as follows:

In HITL optimization using Optuna Dashboard, there are primarily the following components:

1. Optuna Dashboard for displaying the outputs and making evaluations

2. Database and File Storage to store the experiment’s data (Study)

3. Script that samples hyperparameters from Optuna and generates outputs

The DB is the place where the information of the Study is stored. The Artifact Store is a place for storing artifacts
(data, files, etc.) for the Optuna Dashboard. In this case, it is used as a storage location for the RGB images.

4.1. Tutorial: Human-in-the-loop Optimization using Objective Form Widgets 35

Optuna Dashboard

Our script repeatedly performs these steps:

1. Monitor the Study’s state to maintain a constant number of Trials in progress (Running).

2. Sample hyperparameters using the optimization algorithm and generate RGB images.

3. Upload the generated RGB images to the Artifact Store.

Additionally, the evaluator, Optuna Dashboard, and Optuna perform the following processes:

a. Optuna Dashboard retrieves the RGB images uploaded to the Artifact Store and displays the retrieved RGB
images to the evaluator

b. The evaluator reviews the displayed RGB images and inputs their evaluation of how close the displayed image is
to the “color of the sunset” into the Optuna Dashboard

c. Optuna Dashboard saves the evaluation results in the database

In the example of this tutorial, processes 1-3 and a-c are executed in parallel.

36 Chapter 4. Tutorials

Optuna Dashboard

Steps

Given the above system, we carry out HITL optimization as follows:

1. Environment setup

2. Execution of the HITL optimization script

3. Launching Optuna Dashboard

4. Interactive HITL optimization

Environment setup

To run the script used in this tutorial, you need to install following libraries:

$ pip install "optuna>=3.3.0" "optuna-dashboard>=0.12.0" pillow

You will use SQLite for the storage backend in this tutorial. Ensure that the following library is installed:

• SQLite

Execution of the HITL optimization script

Run a python script below which you copied from main.py

$ python main.py

Launching Optuna Dashboard

Run this command to launch Optuna Dashboard in a separate process.

$ optuna-dashboard sqlite:///db.sqlite3 --artifact-dir ./artifact

In the command, the storage is set to sqlite:///db.sqlite3 to persist Optuna’s trial history. To store the artifacts,
--artifact-dir ./artifact is specified.

Listening on http://127.0.0.1:8080/
Hit Ctrl-C to quit.

When you run the command, you will see a message like the one above. Open http://127.0.0.1:8080/dashboard/ in your
browser.

4.1. Tutorial: Human-in-the-loop Optimization using Objective Form Widgets 37

https://github.com/optuna/optuna-examples/blob/main/dashboard/hitl/main.py
https://sqlite.org/index.html
https://github.com/optuna/optuna-examples/blob/main/dashboard/hitl/main.py
http://127.0.0.1:8080/dashboard/

Optuna Dashboard

Interactive HITL optimization

You will see the main screen.

38 Chapter 4. Tutorials

Optuna Dashboard

In this example, a study is created with the name “Human-in-the-loop Optimization.” Click on it. You will be directed
to the page related to that study.

4.1. Tutorial: Human-in-the-loop Optimization using Objective Form Widgets 39

Optuna Dashboard

Click the third item in the sidebar. You will see a list of all trials.

40 Chapter 4. Tutorials

Optuna Dashboard

For each trial, you can see its details such as RGB parameter values and importantly, the generated image based on
these values.

Let’s evaluate some of the images. For the first image, which is far from the “color of the sunset,” we rated it as
“Bad.” For the next image, which is somewhat closer to the “color of the sunset,” we rated it as “So-so.” Continue this
evaluation process for several trials. After evaluating about 30 trials, we should see an improvement.

We can review the progress of the HITL optimization through graphs and other visualizations.

4.1. Tutorial: Human-in-the-loop Optimization using Objective Form Widgets 41

Optuna Dashboard

Also, this image is an array of images up to 30 trials. The best ones are surrounded by thick lines.

By looking at the History plot, you can see that colors gradually get closer to the “color of the sunset”.

42 Chapter 4. Tutorials

Optuna Dashboard

Additionally, by looking at the Parallel Coordinate plot, you can get an insight into the relationship between the evalu-
ation and each hyperparameter.

Various other plots are available. Try exploring.

Script explanation

Let’s walk through the script we used for the optimization.

1 def suggest_and_generate_image(
2 study: optuna.Study, artifact_store: FileSystemArtifactStore
3) -> None:
4 # 1. Ask new parameters
5 trial = study.ask()
6 r = trial.suggest_int("r", 0, 255)
7 g = trial.suggest_int("g", 0, 255)
8 b = trial.suggest_int("b", 0, 255)
9

10 # 2. Generate image
11 image_path = f"tmp/sample-{trial.number}.png"
12 image = Image.new("RGB", (320, 240), color=(r, g, b))
13 image.save(image_path)
14

15 # 3. Upload Artifact
16 artifact_id = upload_artifact(trial, image_path, artifact_store)
17 artifact_path = get_artifact_path(trial, artifact_id)
18

19 # 4. Save Note
20 note = textwrap.dedent(
21 f"""\
22 ## Trial {trial.number}
23

24 ![generated-image]({artifact_path})
25 """
26)
27 save_note(trial, note)

In the suggest_and_generate_image function, a new Trial is obtained and new hyperparameters are suggested for
that Trial. Based on those hyperparameters, an RGB image is generated as an artifact. The generated image is then
uploaded to the Artifact Store of the Optuna, and the image is also displayed in the Dashboard’s Note. For more
information on how to use the Note feature, please refer to the API Reference of save_note().

1 def start_optimization(artifact_store: FileSystemArtifactStore) -> NoReturn:
2 # 1. Create Study
3 study = optuna.create_study(
4 study_name="Human-in-the-loop Optimization",
5 storage="sqlite:///db.sqlite3",
6 sampler=optuna.samplers.TPESampler(constant_liar=True, n_startup_trials=5),
7 load_if_exists=True,
8)
9

10 # 2. Set an objective name
11 study.set_metric_names(["Looks like sunset color?"])

(continues on next page)

4.1. Tutorial: Human-in-the-loop Optimization using Objective Form Widgets 43

Optuna Dashboard

(continued from previous page)

12

13 # 3. Register ChoiceWidget
14 register_objective_form_widgets(
15 study,
16 widgets=[
17 ChoiceWidget(
18 choices=["Good ", "So-so", "Bad "],
19 values=[-1, 0, 1],
20 description="Please input your score!",
21),
22],
23)
24

25 # 4. Start Human-in-the-loop Optimization
26 n_batch = 4
27 while True:
28 running_trials = study.get_trials(deepcopy=False, states=(TrialState.RUNNING,))
29 if len(running_trials) >= n_batch:
30 time.sleep(1) # Avoid busy-loop
31 continue
32 suggest_and_generate_image(study, artifact_store)

The function start_optimization defines our loop for HITL optimization to generate an image resembling a sunset
color.

• First, at #1, a Study of Optuna is created using TPESampler. Setting load_if_exists=True allows a Study
to exist and be reused and the experiment to be resumed if it has already been created. The reason for setting
constant_liar=True in TPESampler is to prevent similar hyperparameters from being sampled even if the
trial is executed several times simultaneously (in this example, four times).

• At #2, the name of the objective that the ChoiceWidget targets is set using the study.set_metric_names function.
In this case, the name “Looks like sunset color?” is set.

• At #3, the ChoiceWidget is registered using the register_objective_form_widgets() function. This
widget is used to ask users for evaluation to find the optimal hyperparameters. In this case, there are three
options: “Good ”, “So-so”, and “Bad ”, each with an evaluation value of -1, 0, and 1, respectively. Note that
Optuna minimizes objective values by default, so -1 is Good. Other widgets for evaluation are also available, so
please refer to the API Reference for details.

• At #4, the suggest_and_generate_image function is used to generate an RGB image. Here, the number
of currently running (TrialState.RUNNING) trials is periodically checked to ensure that four trials are running
simultaneously. The reason why trials are executed in batches like this is that it generally may take a long time to
obtain results from trial execution. By performing batch parallel processing, time waiting for the next results can
be reduced. In this case, because generating the images is instant, it’s not necessary, but demonstrates practices.

1 def main() -> NoReturn:
2 tmp_path = os.path.join(os.path.dirname(__file__), "tmp")
3

4 # 1. Create Artifact Store
5 artifact_path = os.path.join(os.path.dirname(__file__), "artifact")
6 artifact_store = FileSystemArtifactStore(artifact_path)
7

8 if not os.path.exists(artifact_path):
9 os.mkdir(artifact_path)

(continues on next page)

44 Chapter 4. Tutorials

https://optuna.readthedocs.io/en/latest/reference/generated/optuna.study.Study.html#optuna.study.Study.set_metric_names

Optuna Dashboard

(continued from previous page)

10

11 if not os.path.exists(tmp_path):
12 os.mkdir(tmp_path)
13

14 # 2. Run optimize loop
15 start_optimization(artifact_store)

In the main function, at first, the locations of the Artifact Store is set.

• At #1, the FileSystemArtifactStore is created, which is one of the Artifact Store options used in the Optuna.
Artifact Store is used to store artifacts (data, files, etc.) generated during Optuna trials. For more information,
please refer to the API Reference.

• At #2, start_optimization() function, which is described above, is called.

After that, two folders are created, artifact and tmp, and then start_optimization function is called to start the
HITL optimization using Optuna.

4.2 Tutorial: Preferential Optimization

4.2.1 What is Preferential Optimization?

Preferential optimization is a method for optimizing hyperparameters, focusing of human preferences, by determining
which trial is superior when comparing a pair. It differs from human-in-the-loop optimization utilizing objective form
widgets, which relies on absolute evaluations, as it significantly reduces fluctuations in evaluators’ criteria, thus ensuring
more consistent results.

In this tutorial, we’ll interactively optimize RGB values to generate a color resembling a “sunset hue”, aligining with the
problem setting in this tutorial. Familiarity with the tutorial ob objective form widgets may enhance your understanding.

4.2.2 How to Run Preferential Optimization

In preferential optimization, two programs run concurrently: generator.py performing parameter sampling and image
generation, and the Optuna Dashboard, offering a user interface for human evaluation.

First, ensure the necessary packages are installed by executing the following command in your terminal:

4.2. Tutorial: Preferential Optimization 45

https://optuna.readthedocs.io/en/stable/reference/generated/optuna.artifacts.FileSystemArtifactStore.html
https://github.com/optuna/optuna-examples/blob/main/dashboard/preferential-optimization/generator.py

Optuna Dashboard

$ pip install "optuna>=3.3.0" "optuna-dashboard[preferential]>=0.13.0b1" pillow

Next, execute the Python script, copied from generator.py.

$ python generator.py

Then, launch Optuna Dashboard in a separate process using the following command.

$ optuna-dashboard sqlite:///example.db --artifact-dir ./artifact

Here, the storage is configured to sqlite:///example.db to retain Optuna’s trial history, and --artifact-dir
./artifact is specified to store the artifacts (output images).

Listening on http://127.0.0.1:8080/
Hit Ctrl-C to quit.

Upon executing the command, a message like the above will appear. Open http://127.0.0.1:8080/dashboard/ in your
browser to view the Optuna Dashboard:

Fig. 1: Select the least sunset-like color from four trials to record human preferences.

4.2.3 Script Explanation

First, we specify the SQLite database URL and initialize the artifact store to house the images produced during the
trial.

1 STORAGE_URL = "sqlite:///example.db"
2 artifact_path = os.path.join(os.path.dirname(__file__), "artifact")
3 artifact_store = FileSystemArtifactStore(base_path=artifact_path)
4 os.makedirs(artifact_path, exist_ok=True)

Within the main() function, creating dedicated Study and Sampler objects since preferential optimization relies on
the comparison results between trials, lacking absolute evaluation values for each one.

Then, the component to be displayed on the human feedback pages is registered via
register_preference_feedback_component(). The generated images are uploaded to the artifact store,
and their artifact_id is stored in the trial user attribute (e.g., trial.user_attrs["rgb_image"]), enabling the
Optuna Dashboard to display images on the evaluation feedback page.

1 from optuna_dashboard import register_preference_feedback_component
2 from optuna_dashboard.preferential import create_study
3 from optuna_dashboard.preferential.samplers.gp import PreferentialGPSampler
4

5 study = create_study(
6 n_generate=4,
7 study_name="Preferential Optimization",
8 storage=STORAGE_URL,
9 sampler=PreferentialGPSampler(),

10 load_if_exists=True,
11)
12 # Change the component, displayed on the human feedback pages.
13 # By default (component_type="note"), the Trial's Markdown note is displayed.

(continues on next page)

46 Chapter 4. Tutorials

https://github.com/optuna/optuna-examples/blob/main/dashboard/preferential-optimization/generator.py
http://127.0.0.1:8080/dashboard/

Optuna Dashboard

(continued from previous page)

14 user_attr_key = "rgb_image"
15 register_preference_feedback_component(study, "artifact", user_attr_key)

Following this, we create a loop that continuously checks if new trials should be generated, awaiting human eval-
uation if not. Within the while loop, new trials are generated if the condition should_generate() returns True.
For each trial, RGB values are sampled, an image is generated with these values, saved temporarily. Then the
image is uploaded to the artifact store, and finally, the artifact_id is stored to the key, which is specified via
register_preference_feedback_component().

1 while True:
2 # If study.should_generate() returns False, the generator waits for human evaluation.
3 if not study.should_generate():
4 time.sleep(0.1) # Avoid busy-loop
5 continue
6

7 trial = study.ask()
8 # Ask new parameters
9 r = trial.suggest_int("r", 0, 255)

10 g = trial.suggest_int("g", 0, 255)
11 b = trial.suggest_int("b", 0, 255)
12

13 # Generate an image
14 image_path = os.path.join(tmpdir, f"sample-{trial.number}.png")
15 image = Image.new("RGB", (320, 240), color=(r, g, b))
16 image.save(image_path)
17

18 # Upload Artifact and set artifact_id to trial.user_attrs["rgb_image"].
19 artifact_id = upload_artifact(trial, image_path, artifact_store)
20 trial.set_user_attr(user_attr_key, artifact_id)

4.2. Tutorial: Preferential Optimization 47

Optuna Dashboard

48 Chapter 4. Tutorials

CHAPTER

FIVE

LICENSE

This software is licensed under the MIT license and uses the codes from SQLAlchemy (MIT) project, see LICENSE
for more information.

49

https://github.com/optuna/optuna-dashboard/blob/main/LICENSE

Optuna Dashboard

50 Chapter 5. LICENSE

CHAPTER

SIX

LINKS

• Github

• PyPI

51

https://github.com/optuna/optuna-dashboard
https://pypi.python.org/pypi/optuna-dashboard

Optuna Dashboard

52 Chapter 6. Links

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

53

Optuna Dashboard

54 Chapter 7. Indices and tables

PYTHON MODULE INDEX

o
optuna_dashboard, 9

55

Optuna Dashboard

56 Python Module Index

INDEX

A
add_trial() (optuna_dashboard.preferential.PreferentialStudy

method), 21
add_trials() (optuna_dashboard.preferential.PreferentialStudy

method), 21
after_trial() (optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler

method), 25
ask() (optuna_dashboard.preferential.PreferentialStudy

method), 21

B
before_trial() (optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler

method), 25
best_trials (optuna_dashboard.preferential.PreferentialStudy

property), 22

C
ChoiceWidget (class in optuna_dashboard), 14
create_study() (in module op-

tuna_dashboard.preferential), 19

D
dict_to_form_widget() (in module op-

tuna_dashboard), 14

E
enqueue_trial() (op-

tuna_dashboard.preferential.PreferentialStudy
method), 22

G
get_artifact_path() (in module op-

tuna_dashboard.artifact), 11
get_preferences() (op-

tuna_dashboard.preferential.PreferentialStudy
method), 22

get_trials() (optuna_dashboard.preferential.PreferentialStudy
method), 23

I
infer_relative_search_space() (op-

tuna_dashboard.preferential.samplers.gp.PreferentialGPSampler

method), 25

L
load_study() (in module op-

tuna_dashboard.preferential), 20

M
module

optuna_dashboard, 8

O
ObjectiveUserAttrRef (class in optuna_dashboard),

17
optuna_dashboard

module, 8

P
preferences (optuna_dashboard.preferential.PreferentialStudy

property), 23
PreferentialGPSampler (class in op-

tuna_dashboard.preferential.samplers.gp),
24

PreferentialStudy (class in op-
tuna_dashboard.preferential), 20

R
register_objective_form_widgets() (in module

optuna_dashboard), 12
register_preference_feedback_component() (in

module optuna_dashboard), 27
register_user_attr_form_widgets() (in module

optuna_dashboard), 13
render_objective_form_widgets() (in module op-

tuna_dashboard.streamlit), 28
render_trial_note() (in module op-

tuna_dashboard.streamlit), 28
render_user_attr_form_widgets() (in module op-

tuna_dashboard.streamlit), 29
report_preference() (op-

tuna_dashboard.preferential.PreferentialStudy
method), 23

57

Optuna Dashboard

reseed_rng() (optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler
method), 26

run_server() (in module optuna_dashboard), 9

S
sample_independent() (op-

tuna_dashboard.preferential.samplers.gp.PreferentialGPSampler
method), 26

sample_relative() (op-
tuna_dashboard.preferential.samplers.gp.PreferentialGPSampler
method), 27

save_note() (in module optuna_dashboard), 10
save_plotly_graph_object() (in module op-

tuna_dashboard), 11
set_user_attr() (op-

tuna_dashboard.preferential.PreferentialStudy
method), 23

should_generate() (op-
tuna_dashboard.preferential.PreferentialStudy
method), 23

SliderWidget (class in optuna_dashboard), 15
study_name (optuna_dashboard.preferential.PreferentialStudy

property), 24

T
TextInputWidget (class in optuna_dashboard), 16
to_dict() (optuna_dashboard.ChoiceWidget method),

15
to_dict() (optuna_dashboard.ObjectiveUserAttrRef

method), 18
to_dict() (optuna_dashboard.SliderWidget method),

16
to_dict() (optuna_dashboard.TextInputWidget

method), 17
trials (optuna_dashboard.preferential.PreferentialStudy

property), 24

U
user_attrs (optuna_dashboard.preferential.PreferentialStudy

property), 24

W
wsgi() (in module optuna_dashboard), 10

58 Index

	Getting Started
	Installation
	Prerequisite
	Installing from PyPI
	Installing from the source code

	Command-line Interface
	Using an official Docker image
	Python Interface
	Using Gunicorn or uWSGI server
	Jupyter Lab Extension (Experimental)
	Browser-only version (Experimental)
	VS Code and code-server Extension (Experimental)
	Google Colaboratory

	API Reference
	General APIs
	optuna_dashboard.run_server
	optuna_dashboard.wsgi
	optuna_dashboard.save_note
	optuna_dashboard.save_plotly_graph_object
	optuna_dashboard.artifact.get_artifact_path

	Human-in-the-loop
	Form Widgets
	optuna_dashboard.register_objective_form_widgets
	optuna_dashboard.register_user_attr_form_widgets
	optuna_dashboard.dict_to_form_widget
	optuna_dashboard.ChoiceWidget
	optuna_dashboard.SliderWidget
	optuna_dashboard.TextInputWidget
	optuna_dashboard.ObjectiveUserAttrRef

	Preferential Optimization
	optuna_dashboard.preferential.create_study
	optuna_dashboard.preferential.load_study
	optuna_dashboard.preferential.PreferentialStudy
	optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler
	optuna_dashboard.register_preference_feedback_component

	Streamlit
	optuna_dashboard.streamlit.render_trial_note
	optuna_dashboard.streamlit.render_objective_form_widgets
	optuna_dashboard.streamlit.render_user_attr_form_widgets

	Error Messages
	Warning Messages
	Human-in-the-loop optimization will not work with _CachedStorage in Optuna prior to v3.2.
	set_objective_names() function is deprecated. Please use study.set_metric_names() instead.
	upload_artifact() is deprecated. Please use optuna.artifacts.upload_artifact() instead.
	FileSystemBackend is deprecated. Please use FileSystemArtifactStore instead.
	Boto3Backend` is deprecated. Please use Boto3ArtifactStore instead.

	Tutorials
	Tutorial: Human-in-the-loop Optimization using Objective Form Widgets
	What is human-in-the-loop optimization?
	Main tutorial
	Theme
	System architecture
	Steps
	Environment setup
	Execution of the HITL optimization script
	Launching Optuna Dashboard
	Interactive HITL optimization

	Script explanation

	Tutorial: Preferential Optimization
	What is Preferential Optimization?
	How to Run Preferential Optimization
	Script Explanation

	LICENSE
	Links
	Indices and tables
	Python Module Index
	Index

