

Optuna Dashboard

Real-time dashboard for Optuna [https://github.com/optuna/optuna].

Contents:

	Getting Started
	Installation

	Command-line Interface

	Using an official Docker image

	Python Interface

	Using Gunicorn or uWSGI server

	Jupyter Lab Extension (Experimental)

	Browser-only version (Experimental)

	VS Code and code-server Extension (Experimental)

	Google Colaboratory

	API Reference
	General APIs

	Human-in-the-loop

	Streamlit

	Error Messages
	Warning Messages

	Tutorials
	Tutorial: Human-in-the-loop Optimization using Objective Form Widgets

	Tutorial: Preferential Optimization

LICENSE

This software is licensed under the MIT license and uses the codes from SQLAlchemy (MIT) project,
see LICENSE [https://github.com/optuna/optuna-dashboard/blob/main/LICENSE] for more information.

Links

	Github [https://github.com/optuna/optuna-dashboard]

	PyPI [https://pypi.python.org/pypi/optuna-dashboard]

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

[image: Optuna Dashboard]

Optuna Dashboard

Installation

Prerequisite

Optuna Dashboard supports Python 3.7 or newer.

Installing from PyPI

You can install optuna-dashboard via PyPI [https://pypi.org/project/optuna-dashboard/] or Anaconda Cloud [https://anaconda.org/conda-forge/optuna-dashboard].

$ pip install optuna-dashboard

Also, you can install following optional dependencies to make optuna-dashboard faster.

$ pip install optuna-fast-fanova gunicorn

Installing from the source code

Since it requires to build TypeScript files, pip install git+https://.../optuna-dashboard.git does not actually work.
Please clone the git repository and execute following commands to build sdist package:

$ git clone git@github.com:optuna/optuna-dashboard.git
$ cd optuna

Node.js v16 is required to compile TypeScript files.
$ npm install
$ npm run build:prd
$ python -m build --sdist

Then you can install it like:

$ pip install dist/optuna-dashboard-x.y.z.tar.gz

See CONTRIBUTING.md [https://github.com/optuna/optuna/blob/master/CONTRIBUTING.md] for more details.

Command-line Interface

The most common usage of Optuna Dashboard is using the command-line interface.
Assuming that Optuna’s optimization history is persisted using RDBStorage,
you can use the command line interface like optuna-dashboard <STORAGE_URL>.

import optuna

def objective(trial):
 x = trial.suggest_float("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x**2 + y

study = optuna.create_study(
 storage="sqlite:///db.sqlite3", # Specify the storage URL here.
 study_name="quadratic-simple"
)
study.optimize(objective, n_trials=100)
print(f"Best value: {study.best_value} (params: {study.best_params})")

$ optuna-dashboard sqlite:///db.sqlite3
Listening on http://localhost:8080/
Hit Ctrl-C to quit.

If you are using JournalStorage classes introduced in Optuna v3.1, you can use them like below:

JournalFileStorage
$ optuna-dashboard ./path/to/journal.log

JournalRedisStorage
$ optuna-dashboard redis://localhost:6379

Using an official Docker image

You can also use an official Docker image [https://github.com/optuna/optuna-dashboard/pkgs/container/optuna-dashboard] instead of setting up your Python environment.
The Docker image only supports SQLite3, MySQL(PyMySQL), and PostgreSQL(Psycopg2).

SQLite3

$ docker run -it --rm -p 8080:8080 -v `pwd`:/app -w /app ghcr.io/optuna/optuna-dashboard sqlite:///db.sqlite3

MySQL (PyMySQL)

$ docker run -it --rm -p 8080:8080 ghcr.io/optuna/optuna-dashboard mysql+pymysql://username:password@hostname:3306/dbname

PostgreSQL (Psycopg2)

$ docker run -it --rm -p 8080:8080 ghcr.io/optuna/optuna-dashboard postgresql+psycopg2://username:password@hostname:5432/dbname

Python Interface

Python interfaces are also provided for users who want to use other storage implementations (e.g. InMemoryStorage).
You can use run_server() function like below:

import optuna
from optuna_dashboard import run_server

def objective(trial):
 x = trial.suggest_float("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x**2 + y

storage = optuna.storages.InMemoryStorage()
study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=100)

run_server(storage)

Using Gunicorn or uWSGI server

Optuna Dashboard uses wsgiref [https://docs.python.org/3/library/wsgiref.html] module, which is in the Python’s standard libraries, by default.
However, as described here [https://github.com/python/cpython/blob/v3.11.0/Lib/wsgiref/simple_server.py#L3-L7], wsgiref is implemented for testing or debugging purpose.
You can switch to other WSGI server implementations by using wsgi() function.

wsgi.py

from optuna.storages import RDBStorage
from optuna_dashboard import wsgi

storage = RDBStorage("sqlite:///db.sqlite3")
application = wsgi(storage)

Then please execute following commands to start.

$ pip install gunicorn
$ gunicorn --workers 4 wsgi:application

or

$ pip install uwsgi
$ uwsgi --http :8080 --workeers 4 --wsgi-file wsgi.py

Jupyter Lab Extension (Experimental)

You can install the Jupyter Lab extension via PyPI [https://pypi.org/project/jupyterlab-optuna/].

[image: Screenshot for the Jupyter Lab Extension]

Jupyter Lab Extension

To use, click the tile to launch the extension, and enter your Optuna’s storage URL (e.g. sqlite:///db.sqlite3) in the dialog.

Browser-only version (Experimental)

[image: GIF animation for the browser-only version]

Browser-only version of Optuna Dashboard, powered by Wasm.

We’ve developed the version that operates solely within your web browser.
There’s no need to install Python or any other dependencies.
Simply open the following URL in your browser, drag and drop your SQLite3 file onto the page, and you’re ready to view your Optuna studies!

https://optuna.github.io/optuna-dashboard/

Warning

Currently, only a subset of features is available. However, you can still check the optimization history, hyperparameter importances, and etc. in graphs and tables.

VS Code and code-server Extension (Experimental)

You can install the VS Code extension via Visual Studio Marketplace [https://marketplace.visualstudio.com/items?itemName=Optuna.optuna-dashboard#overview],
or install the code-server extension via Open VSX [https://open-vsx.org/extension/Optuna/optuna-dashboard].

[image: Screenshot for the VS Code Extension]

VS Code Extension

To use, right-click the SQLite3 files (*.db or *.sqlite3) in the file explorer and select the “Open in Optuna Dashboard” from the dropdown menu.
This extension leverages the browser-only version of Optuna Dashboard, so the same limitations apply.

Google Colaboratory

When you want to check the optimization history on Google Colaboratory,
you can use google.colab.output() function as follows:

import optuna
import threading
from google.colab import output
from optuna_dashboard import run_server

def objective(trial):
 x = trial.suggest_float("x", -100, 100)
 return (x - 2) ** 2

Run optimization
storage = optuna.storages.InMemoryStorage()
study = optuna.create_study(storage=storage)
study.optimize(objective, n_trials=100)

Start Optuna Dashboard
port = 8081
thread = threading.Thread(target=run_server, args=(storage,), kwargs={"port": port})
thread.start()
output.serve_kernel_port_as_window(port, path='/dashboard/')

Then please open http://localhost:8081/dashboard to browse.

API Reference

General APIs

	optuna_dashboard.run_server

	Start running optuna-dashboard and blocks until the server terminates.

	optuna_dashboard.wsgi

	This function exposes WSGI interface for people who want to run on the production-class WSGI servers like Gunicorn or uWSGI.

	optuna_dashboard.save_note

	Save the note (Markdown format) to the Study or Trial.

	optuna_dashboard.save_plotly_graph_object

	Save the user-defined plotly's graph object to the study.

	optuna_dashboard.artifact.get_artifact_path

	Get the URL path for a given artifact ID.

Human-in-the-loop

Form Widgets

	optuna_dashboard.register_objective_form_widgets

	Register a list of form widgets to an Optuna study.

	optuna_dashboard.register_user_attr_form_widgets

	Register a list of form widgets to an Optuna study.

	optuna_dashboard.dict_to_form_widget

	Restore form widget objects from the dictionary.

	optuna_dashboard.ChoiceWidget

	A widget representing a choice with associated values.

	optuna_dashboard.SliderWidget

	A widget representing a slider for selecting a value within a range.

	optuna_dashboard.TextInputWidget

	A text input widget class that defines a text input field.

	optuna_dashboard.ObjectiveUserAttrRef

	A class representing a reference to a value of trial.user_attrs.

Preferential Optimization

	optuna_dashboard.preferential.create_study

	Like optuna.create_study(), but for preferential optimization.

	optuna_dashboard.preferential.load_study

	Like optuna.load_study(), but for preferential optimization.

	optuna_dashboard.preferential.PreferentialStudy

	A Study-like class for preferential optimization.

	optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler

	Sampler for preferential optimization using Gaussian process.

	optuna_dashboard.register_preference_feedback_component

	Register a preference feedback component to the study.

Streamlit

	optuna_dashboard.streamlit.render_trial_note

	Write a trial note to UI with streamlit as a markdown format.

	optuna_dashboard.streamlit.render_objective_form_widgets

	Render user input widgets to UI with streamlit.

	optuna_dashboard.streamlit.render_user_attr_form_widgets

	Render user input widgets to UI with streamlit.

optuna_dashboard.run_server

	
optuna_dashboard.run_server(storage, host='localhost', port=8080, artifact_store=None, *, artifact_backend=None)

	Start running optuna-dashboard and blocks until the server terminates.

This function uses wsgiref module which is not intended for the production
use. If you want to run optuna-dashboard more secure and/or more fast,
please use WSGI server like Gunicorn or uWSGI via wsgi() function.

	Parameters:

	
	storage (Union[str, BaseStorage]) –

	host (str) –

	port (int) –

	artifact_store (Optional[ArtifactStore | ArtifactBackend]) –

	artifact_backend (Optional[ArtifactBackend]) –

	Return type:

	None

optuna_dashboard.wsgi

	
optuna_dashboard.wsgi(storage, artifact_store=None, *, artifact_backend=None)

	This function exposes WSGI interface for people who want to run on the
production-class WSGI servers like Gunicorn or uWSGI.

	Parameters:

	
	storage (Union[str, BaseStorage]) –

	artifact_store (Optional[ArtifactBackend | ArtifactStore]) –

	artifact_backend (Optional[ArtifactBackend]) –

	Return type:

	WSGIApplication

optuna_dashboard.save_note

	
optuna_dashboard.save_note(study_or_trial, body)

	Save the note (Markdown format) to the Study or Trial.

Example

import optuna
from optuna_dashboard import save_note

def objective(trial: optuna.Trial) -> float:
 x1 = trial.suggest_float("x1", 0, 10)

 save_note(trial, textwrap.dedent(f''' ## Trial {trial.number}

 You can *freely* take a **note** that is associated with the Trial.
 '''))
 return (x1 - 2) ** 2

study = optuna.create_study()
save_note(study, textwrap.dedent(f''' ## {study.study_name}

You can *freely* take a **note** that is associated with the study.
'''))
study.optimize(objective, n_trials=10)

	Parameters:

	
	study_or_trial (Study | Trial) –

	body (str) –

	Return type:

	None

optuna_dashboard.save_plotly_graph_object

	
optuna_dashboard.save_plotly_graph_object(study, figure, *, graph_object_id=None)

	Save the user-defined plotly’s graph object to the study.

Example

import optuna
from optuna_dashboard import save_plotly_graph_object

def objective(trial):
 x = trial.suggest_float("x", -100, 100)
 y = trial.suggest_categorical("y", [-1, 0, 1])
 return x**2 + y

study = optuna.create_study()
study.optimize(objective, n_trials=100)

figure = optuna.visualization.plot_optimization_history(study)
save_plotly_graph_object(study, figure)

	Parameters:

	
	study (Study) – Target study object.

	plot_data – The plotly’s graph object to save.

	graph_object_id (str | None) – Unique identifier of the graph object. If specified, the graph object is overwritten.
This must be a valid HTML id attribute value.

	figure (go.Figure) –

	Returns:

	The graph object ID.

	Return type:

	str

optuna_dashboard.artifact.get_artifact_path

	
optuna_dashboard.artifact.get_artifact_path(study_or_trial, artifact_id)

	Get the URL path for a given artifact ID.

	Parameters:

	
	study_or_trial (Trial | Study) – A Trial object, or a Study object.

	artifact_id (str) – An artifact ID.

	Returns:

	A URL path to the artifact.

	Return type:

	str

optuna_dashboard.register_objective_form_widgets

	
optuna_dashboard.register_objective_form_widgets(study, widgets)

	Register a list of form widgets to an Optuna study.

Submitted values to the forms are told as each trial’s objective values.

	Parameters:

	
	study (Study) – The Optuna study object to register the form widgets for.

	widgets (list[ChoiceWidget | SliderWidget | TextInputWidget | ObjectiveUserAttrRef]) – A list of ObjectiveFormWidget objects to be registered in the study.

	Raises:

	
	ValueError – If the length of study directions is not equal to the length of widgets.

	Warning – If any widget has user_attr_key specified, but it will not be used.

	Return type:

	None

Examples

import optuna
from optuna_dashboard import ChoiceWidget, SliderWidget
from optuna_dashboard import register_objective_form_widgets

study = optuna.create_study()
register_objective_form_widgets(
 study,
 widgets=[
 ObjectiveChoiceWidget(
 choices=["Good 👍", "Bad 👎"],
 values=[-1, 1],
 description="Please input your score!",
),
 ObjectiveSliderWidget(
 min=1,
 max=10,
 step=1,
 description="Higher is better.",
),
],
)

optuna_dashboard.register_user_attr_form_widgets

	
optuna_dashboard.register_user_attr_form_widgets(study, widgets)

	Register a list of form widgets to an Optuna study.

Submitted values to the forms are registered as each trial’s user_attrs.

	Parameters:

	
	study (Study) – The Optuna study object to register the form widgets for.

	widgets (list[ChoiceWidget | SliderWidget | TextInputWidget | ObjectiveUserAttrRef]) – A list of ObjectiveFormWidget objects to be registered in the study.

	Raises:

	
	ValueError – If an ObjectiveUserAttrRef is specified or if user_attr_key is not specified.

	ValueError – If user_attr_key is not unique for each widget.

	Return type:

	None

Examples

import optuna
from optuna_dashboard import ChoiceWidget, SliderWidget
from optuna_dashboard import register_user_attr_form_widgets

study = optuna.create_study()
register_user_attr_form_widgets(
 study,
 widgets=[
 ChoiceWidget(
 choices=["Good 👍", "Bad 👎"],
 values=[-1, 1],
 description="Please input your score!",
 user_attr_key="hitl/choice",
),
 SliderWidget(
 min=1,
 max=10,
 step=1,
 description="Higher is better.",
 user_attr_key="hitl/slider",
),
],
)

optuna_dashboard.dict_to_form_widget

	
optuna_dashboard.dict_to_form_widget(d)

	Restore form widget objects from the dictionary.

	Parameters:

	d (dict[str, Any]) – A dictionary object.

	Returns:

	an instance of the restored form widget class.

	Return type:

	object

optuna_dashboard.ChoiceWidget

	
class optuna_dashboard.ChoiceWidget(choices, values, description=None, user_attr_key=None)

	A widget representing a choice with associated values.

	Parameters:

	
	choices (list[str]) – A list of strings representing the available choices.

	values (list[float]) – A list of float values associated with each choice.

	description (Optional[str]) – A description of the widget. Defaults to None.

	user_attr_key (Optional[str]) – The key used by register_user_attr_form_widgets.
Form output is saved as trial.user_attrs[user_attr_key]. Defaults to None.

Example

from optuna_dashboard import ChoiceWidget

choice_widget = ChoiceWidget(
 choices=["A", "B", "C"], values=[1.0, 2.0, 3.0], description="Choose one"
)

Methods

	to_dict()

	Convert the ChoiceWidget object to a dictionary.

Attributes

	description

	

	user_attr_key

	

	choices

	

	values

	

	
to_dict()

	Convert the ChoiceWidget object to a dictionary.

	Returns:

	A dictionary representing the ChoiceWidget object.

	Return type:

	ChoiceWidgetJSON

optuna_dashboard.SliderWidget

	
class optuna_dashboard.SliderWidget(min, max, step=None, labels=None, description=None, user_attr_key=None)

	A widget representing a slider for selecting a value within a range.

	Parameters:

	
	min (float) – The minimum value of the slider.

	max (float) – The maximum value of the slider.

	step (Optional[float]) – The step size for the slider. Defaults to None.

	labels (Optional[list[tuple[float, str]]]) – A list of tuples containing value and label for the slider. Defaults to None.

	description (Optional[str]) – A description for the slider. Defaults to None.

	user_attr_key (Optional[str]) – The key used by register_user_attr_form_widgets.
Form output is saved as trial.user_attrs[user_attr_key]. Defaults to None.

Example

from optuna_dashboard import SliderWidget

slide_widget = SliderWidget(min=0, max=10, step=1, description="Example slider")

Methods

	to_dict()

	Convert the SliderWidget instance to a dictionary.

Attributes

	description

	

	labels

	

	step

	

	user_attr_key

	

	min

	

	max

	

	
to_dict()

	Convert the SliderWidget instance to a dictionary.

	Returns:

	A dictionary representation of the SliderWidget instance.

	Return type:

	SliderWidgetJSON

optuna_dashboard.TextInputWidget

	
class optuna_dashboard.TextInputWidget(description=None, user_attr_key=None, optional=False)

	A text input widget class that defines a text input field.

	Parameters:

	
	description (Optional[str]) – A description of the text input field.

	user_attr_key (Optional[str]) – The key used by register_user_attr_form_widgets.
Form output is saved as trial.user_attrs[user_attr_key]. Defaults to None.

	optional (bool) – If True, an empty string is acceptable.

Example

from optuna_dashboard import TextInputWidget

text_input = TextInputWidget(description="Text Input Example")

Methods

	to_dict()

	Converts the TextInputWidget instance to a dictionary representation.

Attributes

	description

	

	optional

	

	user_attr_key

	

	
to_dict()

	Converts the TextInputWidget instance to a dictionary representation.

	Returns:

	The dictionary representation of the TextInputWidget instance.

	Return type:

	TextInputWidgetJSON

optuna_dashboard.ObjectiveUserAttrRef

	
class optuna_dashboard.ObjectiveUserAttrRef(key)

	A class representing a reference to a value of trial.user_attrs.
When combined with register_objective_form_widgets, users can tell values that are
registered to trial.user_attrs during the human-in-the-loop optimization.

	Parameters:

	key (str) – The key of trial.user_attrs being referenced.

Example

from optuna_dashboard import ObjectiveUserAttrRef

user_attr_ref = ObjectiveUserAttrRef(key="key")

Methods

	to_dict()

	Converts the ObjectiveUserAttrRef instance to a dictionary representation.

Attributes

	key

	

	
to_dict()

	Converts the ObjectiveUserAttrRef instance to a dictionary representation.

	Returns:

	The dictionary representation of the ObjectiveUserAttrRef instance.

	Return type:

	UserAttrRefJSON

optuna_dashboard.preferential.create_study

	
optuna_dashboard.preferential.create_study(*, n_generate, storage=None, sampler=None, study_name=None, load_if_exists=False)

	Like optuna.create_study(), but for preferential optimization.

Example

import optuna
from optuna_dashboard.preferential import create_study

study = create_study()
trial = study.ask()

	Parameters:

	
	n_generate (int) – The number of active trials to keep.
should_generate() returns
True if the number of trials not reported bad and not skipped are less than
n_generate.

	storage (str | BaseStorage | None) – Database URL. If this argument is set to None, in-memory storage is used, and the
PreferentialStudy will not be persistent.

	sampler (BaseSampler | None) – A sampler object that implements background algorithm for value suggestion.
If None is specified,
PreferentialGPSampler is used.
Please note that most Optuna samplers does not work efficiently for preferential
optimization.

	study_name (str | None) – Study’s name. If this argument is set to None, a unique name is generated
automatically.

	load_if_exists (bool) – Flag to control the behavior to handle a conflict of study names.
In the case where a study named study_name already exists in the storage,
a DuplicatedStudyError is raised if load_if_exists is
set to False.
Otherwise, the creation of the study is skipped, and the existing one is returned.

	Returns:

	A PreferentialStudy object.

	Return type:

	PreferentialStudy

Note

Preferential optimization is an experimental feature (introduced in v0.13.0).
The interface may change in newer versions without prior notice.

optuna_dashboard.preferential.load_study

	
optuna_dashboard.preferential.load_study(*, study_name, storage, sampler=None)

	Like optuna.load_study(), but for preferential optimization.

Example

import optuna
from optuna_dashboard.preferential import create_study
from optuna_dashboard.preferential import load_study

study = create_study(storage="sqlite:///example.db", study_name="my_study")
study.ask()

loaded_study = load_study(study_name="my_study", storage="sqlite:///example.db")
assert len(loaded_study.trials) == len(study.trials)

	Parameters:

	
	study_name (str | None) – Study’s name. Each study has a unique name as an identifier. If None, checks
whether the storage contains a single study, and if so loads that study.
study_name is required if there are multiple studies in the storage.

	storage (str | BaseStorage) – Database URL such as sqlite:///example.db. Please see also the documentation of
create_study() for further details.

	sampler (BaseSampler | None) – A sampler object that implements background algorithm for value suggestion.
If None is specified,
PreferentialGPSampler is used.
Please note that most Optuna samplers does not work efficiently for preferential
optimization.

	Returns:

	A PreferentialStudy object.

	Return type:

	PreferentialStudy

Note

Preferential optimization is an experimental feature (introduced in v0.13.0).
The interface may change in newer versions without prior notice.

optuna_dashboard.preferential.PreferentialStudy

	
class optuna_dashboard.preferential.PreferentialStudy(study)

	A Study-like class for preferential optimization.

This object provides interfaces to create a new Trial [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.trial.Trial.html#optuna.trial.Trial], set/get results
of pairwise comparison called preferences.

Note that the direct use of this constructor is not recommended.
To create and load a study, please refer to the documentation of
create_study() and
load_study() respectively.

Note

Preferential optimization is an experimental feature (introduced in v0.13.0).
The interface may change in newer versions without prior notice.

Methods

	add_trial(trial)

	Add a trial to the study.

	add_trials(trials)

	Add trials to the study.

	ask([fixed_distributions])

	Create a new trial from which hyperparameters can be suggested.

	enqueue_trial(params[, user_attrs, ...])

	Enqueue a trial with given parameter values.

	get_preferences(*[, deepcopy])

	Return results of pairwise comparison.

	get_trials([deepcopy, states])

	Return the trials that is not dominated by other trials.

	report_preference(better_trials, worse_trials)

	Report results of pairwise comparison.

	set_user_attr(key, value)

	Set a user attribute to the study.

	should_generate()

	Return whether the generator should generate a new trial now.

Attributes

	best_trials

	Return the trials that is not dominated by other trials.

	preferences

	Return results of pairwise comparison.

	study_name

	Return the name of the study.

	trials

	Return the all trials.

	user_attrs

	Return user attributes of the study.

	Parameters:

	study (optuna.Study) –

	
add_trial(trial)

	Add a trial to the study.

See also

See Study.add_trials() [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.add_trials] for details.

	Parameters:

	trial (FrozenTrial) –

	Return type:

	None

	
add_trials(trials)

	Add trials to the study.

See also

See Study.add_trials() [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.add_trials] for details.

	Parameters:

	trials (Iterable[FrozenTrial]) –

	Return type:

	None

	
ask(fixed_distributions=None)

	Create a new trial from which hyperparameters can be suggested.

See also

See Study.ask [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.ask] for details.

	Parameters:

	fixed_distributions (dict[str, BaseDistribution] | None) – A dictionary containing the parameter names and parameter’s distributions. Each
parameter in this dictionary is automatically suggested for the returned trial,
even when the suggest method is not explicitly invoked by the user. If this
argument is set to None, no parameter is automatically suggested.

	Returns:

	A Trial object.

	Return type:

	Trial

	
property best_trials: list[FrozenTrial]

	Return the trials that is not dominated by other trials.

	Returns:

	A list of FrozenTrial object

	
enqueue_trial(params, user_attrs=None, skip_if_exists=False)

	Enqueue a trial with given parameter values.

You can fix the next sampling parameters which will be evaluated in your
objective function.

See also

See `Study.enqueue_trials`_ for details.

	Parameters:

	
	params (dict[str, Any]) – Parameter values to pass your objective function.

	user_attrs (dict[str, Any] | None) – A dictionary of user-specific attributes other than params.

	skip_if_exists (bool) – When True, prevents duplicate trials from being enqueued again.

Note

This method might produce duplicated trials if called simultaneously
by multiple processes at the same time with same params dict.

	Return type:

	None

	
get_preferences(*, deepcopy=True)

	Return results of pairwise comparison.

	Parameters:

	deepcopy (bool) – Flag to control whether to apply copy.deepcopy() to the trials.
Note that if you set the flag to False, you shouldn’t mutate
any fields of the returned trial. Otherwise the internal state of
the study may corrupt and unexpected behavior may happen.

	Returns:

	A list of the pair of FrozenTrial objects. The left trial is better than the right one.

	Return type:

	list[tuple[FrozenTrial, FrozenTrial]]

	
get_trials(deepcopy=True, states=None)

	Return the trials that is not dominated by other trials.

See also

See `Study.get_trials`_ for details.

	Parameters:

	
	deepcopy (bool) – Flag to control whether to apply copy.deepcopy() to the trials.
Note that if you set the flag to False, you shouldn’t mutate
any fields of the returned trial. Otherwise the internal state of
the study may corrupt and unexpected behavior may happen.

	states (Container[TrialState] | None) – Trial states to filter on. If None, include all states.

	Returns:

	A list of FrozenTrial object

	Return type:

	list[FrozenTrial]

	
property preferences: list[tuple[FrozenTrial, FrozenTrial]]

	Return results of pairwise comparison.

	Returns:

	A list of the pair of FrozenTrial objects. The left trial is better than the right one.

	
report_preference(better_trials, worse_trials)

	Report results of pairwise comparison.

	Parameters:

	
	better_trials (FrozenTrial | list[FrozenTrial]) – Trials that are better than worse_trials.

	worse_trials (FrozenTrial | list[FrozenTrial]) – Trials that are worse than better_trials.

	Return type:

	None

	
set_user_attr(key, value)

	Set a user attribute to the study.

	Parameters:

	
	key (str) – A key string of the attribute.

	value (Any) – A value of the attribute. The value should be JSON serializable.

	Return type:

	None

See also

See the tutorial for user attributes [https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/003_attributes.html] on Optuna’s documentation.

	
should_generate()

	Return whether the generator should generate a new trial now.

Returns True if the number of trials not reported bad and not skipped are less than
n_generate. Users are recommended
to generate a new trial if this method returns True, and to wait for human
evaluation if this method returns False.

	Return type:

	bool

	
property study_name: str

	Return the name of the study.

	Returns:

	A string object

	
property trials: list[FrozenTrial]

	Return the all trials.

See also

See Study.trials [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.trials] for details.

	Returns:

	A list of FrozenTrial object

	
property user_attrs: dict[str, Any]

	Return user attributes of the study.

See also

See Study.user_attrs [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html#optuna.study.Study.user_attrs] for details.

	Returns:

	A dictionary containing all user attributes

optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler

	
class optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler(*, kernel=None, noise_prior=None, independent_sampler=None, seed=None)

	Sampler for preferential optimization using Gaussian process.

The sampling algorithm is based on Takeno et al., 2023 [https://arxiv.org/abs/2302.01513].
This sampler uses BoTorch to optimize acquisition function.

	Parameters:

	
	kernel (gpytorch.kernels.Kernel | None) – Kernel that computes the covariance on the Gaussian process. Defaults to
Matern 3/2 Kernel + ARD.

	noise_prior (Prior | None) – Prior of the observation noise. Defaults to gamma prior.

	independent_sampler (optuna.samplers.BaseSampler | None) – A BaseSampler instance that is used for independent
sampling. The parameters not contained in the relative search space are sampled
by this sampler. If None is specified,
RandomSampler is used as the default.

	seed (int | None) – Seed for random number generator.

Methods

	after_trial(study, trial, state, values)

	Trial post-processing.

	before_trial(study, trial)

	Trial pre-processing.

	infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

	reseed_rng()

	Reseed sampler's random number generator.

	sample_independent(study, trial, param_name, ...)

	Sample a parameter for a given distribution.

	sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

	
after_trial(study, trial, state, values)

	Trial post-processing.

This method is called after the objective function returns and right before the trial is
finished and its state is stored.

Note

Added in v2.4.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	state (TrialState) – Resulting trial state.

	values (Sequence[float] | None) – Resulting trial values. Guaranteed to not be None if trial succeeded.

	Return type:

	None

	
before_trial(study, trial)

	Trial pre-processing.

This method is called before the objective function is called and right after the trial is
instantiated. More precisely, this method is called during trial initialization, just
before the infer_relative_search_space() call. In other
words, it is responsible for pre-processing that should be done before inferring the search
space.

Note

Added in v3.3.0 as an experimental feature. The interface may change in newer versions
without prior notice. See https://github.com/optuna/optuna/releases/tag/v3.3.0.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.

	Return type:

	None

	
infer_relative_search_space(study, trial)

	Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample_relative()
method, and the search space returned by this method is passed to it. The parameters not
contained in the search space will be sampled by using
sample_independent() method.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	Returns:

	A dictionary containing the parameter names and parameter’s distributions.

	Return type:

	dict[str, BaseDistribution]

See also

Please refer to intersection_search_space() as an
implementation of infer_relative_search_space().

	
reseed_rng()

	Reseed sampler’s random number generator.

This method is called by the Study instance if trials are executed
in parallel with the option n_jobs>1. In that case, the sampler instance will be
replicated including the state of the random number generator, and they may suggest the
same values. To prevent this issue, this method assigns a different seed to each random
number generator.

	Return type:

	None

	
sample_independent(study, trial, param_name, param_distribution)

	Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned
by sample_relative() method. This method is suitable
for sampling algorithms that do not use relationship between parameters such as random
sampling and TPE.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	param_name (str) – Name of the sampled parameter.

	param_distribution (BaseDistribution) – Distribution object that specifies a prior and/or scale of the sampling algorithm.

	Returns:

	A parameter value.

	Return type:

	Any

	
sample_relative(study, trial, search_space)

	Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the
evaluation of the objective function. This method is suitable for sampling algorithms
that use relationship between parameters such as Gaussian Process and CMA-ES.

Note

The failed trials are ignored by any build-in samplers when they sample new
parameters. Thus, failed trials are regarded as deleted in the samplers’
perspective.

	Parameters:

	
	study (Study) – Target study object.

	trial (FrozenTrial) – Target trial object.
Take a copy before modifying this object.

	search_space (dict[str, BaseDistribution]) – The search space returned by
infer_relative_search_space().

	Returns:

	A dictionary containing the parameter names and the values.

	Return type:

	dict[str, Any]

optuna_dashboard.register_preference_feedback_component

	
optuna_dashboard.register_preference_feedback_component(study, component_type, artifact_key=None)

	Register a preference feedback component to the study.

With this feature, you can change the component, displayed on the
human feedback pages. By default, the Markdown note (component_type="note")
is displayed. If you specify component_type="artifact", the viewer for the
specified artifact file will be displayed.

	Parameters:

	
	study (PreferentialStudy) – The study to register the preference feedback component.

	component_type (OUTPUT_COMPONENT_TYPE) – The component type, displayed on the human feedback pages
(default: "note").

	user_attr_artifact_key – This option is required when the component_type is "artifact".
The user attribute, which is specified this field, must contain the
``artifact``id you want to display on the human feedback page.

	artifact_key (str | None) –

	Return type:

	None

optuna_dashboard.streamlit.render_trial_note

	
optuna_dashboard.streamlit.render_trial_note(study, trial)

	Write a trial note to UI with streamlit as a markdown format.

	Parameters:

	
	study (Study) – The optuna study object.

	trial (FrozenTrial) – The optuna trial object to get note.

	Return type:

	None

optuna_dashboard.streamlit.render_objective_form_widgets

	
optuna_dashboard.streamlit.render_objective_form_widgets(study, trial, on_success_callback=None)

	Render user input widgets to UI with streamlit.

Submitted values to the forms are telled to optuna trial object.
All submitted values should be float.
Multiple widgets correspond to multi-objective optimization.

	Parameters:

	
	study (optuna.Study) – The optuna study object to get widget specification.

	trial (FrozenTrial) – The optuna trial object to tell user feedbacks.

	on_success_callback (Optional[Callable[[], None]]) – The callback function which will be executed
when feedback submission is succeeded.

	Raises:

	
	ValueError – If No form widgets registered.

	ValueError – If ‘output_type’ of form widgets is not ‘objective’.

	ValueError – If any submitted values cannot be converted to float.

	Return type:

	None

optuna_dashboard.streamlit.render_user_attr_form_widgets

	
optuna_dashboard.streamlit.render_user_attr_form_widgets(study, trial, on_success_callback=None)

	Render user input widgets to UI with streamlit.

Submitted values to the forms are registered as each trial’s user_attrs.

	Parameters:

	
	study (optuna.Study) – The optuna study object to get widget specification.

	trial (FrozenTrial) – The optuna trial object to save user feedbacks.

	on_success_callback (Optional[Callable[[], None]]) – The callback function which will be executed
when feedback submission is succeeded.

	Raises:

	
	ValueError – If No form widgets registered.

	ValueError – If ‘output_type’ of form widgets is not ‘user_attr’.

	Return type:

	None

Error Messages

This section lists descriptions and background for common error messages and warnings raised or emitted by Optuna Dashboard.

Warning Messages

Human-in-the-loop optimization will not work with _CachedStorage in Optuna prior to v3.2.

This warning occurs when the storage object associated with the Optuna Study is of the _CachedStorage class.

When using RDBStorage with Optuna, it is implicitly wrapped with the _CachedStorage class for performance improvement.
However, there is a bug in the _CachedStorage class that prevents Optuna from synchronizing the latest Trial information.
This bug is not a problem for the general use case of Optuna, but it is critical for human-in-the-loop optimization.

If you are using a version prior to v3.2, please upgrade to v3.2 or later, use another storage classes,
or use a following dirty hack to unwrap _CachedStorage class.

if isinstance(study._storage, optuna.storages._CachedStorage):
 study._storage = study._storage._backend

set_objective_names() function is deprecated. Please use study.set_metric_names() instead.

set_objective_names function has been ported to Optuna.
Please use study.set_metric_names() [https://optuna.readthedocs.io/en/latest/reference/generated/optuna.study.Study.html#optuna.study.Study] function instead.

	Deprecated APIs

	Corresponding Active APIs

	optuna_dashboard.set_objective_names(study, ["objective 1", "objective 2"])

	study.set_metric_names(["objective 1", "objective 2"])

upload_artifact() is deprecated. Please use optuna.artifacts.upload_artifact() instead.

upload_artifact function has been ported to Optuna.
Please use optuna.artifacts.upload_artifact [https://optuna.readthedocs.io/en/latest/reference/generated/optuna.artifacts.upload_artifact.html] function instead.

	Deprecated APIs

	Corresponding Active APIs

	optuna_dashboard.artifact.upload_artifact(artifact_backend, trial, fiel_path)

	optuna.artifacts.upload_artifact(trial, file_path, artifact_store)

Please note that the order of arguments is different between the deprecated and active APIs.

FileSystemBackend is deprecated. Please use FileSystemArtifactStore instead.

FileSystemBackend class has been ported to Optuna.
Please use FileSystemArtifactStore [https://optuna.readthedocs.io/en/latest/reference/generated/optuna.artifacts.FileSystemArtifactStore.html] class instead.

	Deprecated APIs

	Corresponding Active APIs

	optuna_dashboard.artifact.file_system.FileSystemBackend(base_path)

	optuna.artifacts.FileSystemArtifactStore(base_path)

Boto3Backend` is deprecated. Please use Boto3ArtifactStore instead.

Boto3Backend class has been ported to Optuna.
Please use Boto3ArtifactStore [https://optuna.readthedocs.io/en/latest/reference/generated/optuna.artifacts.Boto3ArtifactStore.html] class instead.

	Deprecated APIs

	Corresponding Active APIs

	optuna_dashboard.artifact.boto3.Boto3Backend(bucket_name, client=None)

	optuna.artifacts.Boto3ArtifactStore(bucket_name, client=None)

Tutorials

	Tutorial: Human-in-the-loop Optimization using Objective Form Widgets

	Tutorial: Preferential Optimization

Tutorial: Human-in-the-loop Optimization using Objective Form Widgets

[image: ../_images/hitl1.png]
In tasks involving image generation, natural language, or speech synthesis, evaluating results mechanically can be tough, and human evaluation becomes crucial. Until now, managing such tasks with Optuna has been challenging. However, the introduction of Optuna Dashboard enables humans and optimization algorithms to work interactively and execute the optimization process.

In this tutorial, we will explain how to optimize hyperparameters to generate a simple image using Optuna Dashboard. While the tutorial focuses on a simple task, the same approach can be applied to for instance optimize more complex images, natural language, and speech.

The tutorial is organized as follows:

	What is human-in-the-loop optimization?

	Main tutorial

	Theme

	System architecture

	Steps

	Script explanation

What is human-in-the-loop optimization?

Human-in-the-loop (HITL) is a concept where humans play a role in machine learning or artificial intelligence systems. In HITL optimization in particular, humans are part of the optimization process. This is useful when it’s difficult for machines to evaluate the results and human evaluation is crucial. In such cases, humans will assess the results instead.

Generally, HITL optimization involves the following steps:

	An output is computed given the hyperparameters suggested by an optimization algorithm

	An evaluator (human) evaluates the output

Steps 1 to 2 are repeated to find the best hyperparameters.

HITL optimization is valuable in areas where human judgment is essential, like art and design, since it’s hard for machines to evaluate the output. For instance, it can optimize images created by generative models or improve cooking methods and ingredients for foods like coffee.

Main tutorial

Theme

In this tutorial, we will interactively optimize RGB values between 0 and 255 to generate a color that the user perceives as the “color of the sunset.” If someone already knows the RGB hyperparameter characteristics for their ideal “color of the sunset,” they can specify those values directly. However, even without knowing such characteristics, interactive optimization allows us to find good hyperparameters. Although the task is simple, this serves as a practical introduction to human-in-the-loop optimization, and can be applied to image generation, natural language generation, speech synthesis, and more.

[image: ../_images/hitl2.jpeg]
[image: ../_images/hitl3.jpeg]
To implement HITL optimization, you need a way to interactively execute the optimization process, typically through a user interface (UI) or other means. Usually, users would have to implement their own, but with Optuna Dashboard, everything is already set up for you. This is a major advantage of using Optuna Dashboard for this purpose.

System architecture

The system architecture for this tutorial’s example is as follows:

[image: ../_images/hitl4.png]
In HITL optimization using Optuna Dashboard, there are primarily the following components:

	Optuna Dashboard for displaying the outputs and making evaluations

	Database and File Storage to store the experiment’s data (Study)

	Script that samples hyperparameters from Optuna and generates outputs

The DB is the place where the information of the Study is stored. The Artifact Store is a place for storing artifacts (data, files, etc.) for the Optuna Dashboard. In this case, it is used as a storage location for the RGB images.

[image: ../_images/hitl5.png]
Our script repeatedly performs these steps:

	Monitor the Study’s state to maintain a constant number of Trials in progress (Running).

	Sample hyperparameters using the optimization algorithm and generate RGB images.

	Upload the generated RGB images to the Artifact Store.

[image: ../_images/hitl6.png]
Additionally, the evaluator, Optuna Dashboard, and Optuna perform the following processes:

	Optuna Dashboard retrieves the RGB images uploaded to the Artifact Store and displays the retrieved RGB images to the evaluator

	The evaluator reviews the displayed RGB images and inputs their evaluation of how close the displayed image is to the “color of the sunset” into the Optuna Dashboard

	Optuna Dashboard saves the evaluation results in the database

In the example of this tutorial, processes 1-3 and a-c are executed in parallel.

Steps

Given the above system, we carry out HITL optimization as follows:

	Environment setup

	Execution of the HITL optimization script

	Launching Optuna Dashboard

	Interactive HITL optimization

Environment setup

To run the script [https://github.com/optuna/optuna-examples/blob/main/dashboard/hitl/main.py] used in this tutorial, you need to install following libraries:

$ pip install "optuna>=3.3.0" "optuna-dashboard>=0.12.0" pillow

You will use SQLite for the storage backend in this tutorial. Ensure that the following library is installed:

	SQLite [https://sqlite.org/index.html]

Execution of the HITL optimization script

Run a python script below which you copied from main.py [https://github.com/optuna/optuna-examples/blob/main/dashboard/hitl/main.py]

$ python main.py

Launching Optuna Dashboard

Run this command to launch Optuna Dashboard in a separate process.

$ optuna-dashboard sqlite:///db.sqlite3 --artifact-dir ./artifact

In the command, the storage is set to sqlite:///db.sqlite3 to persist Optuna’s trial history. To store the artifacts, --artifact-dir ./artifact is specified.

Listening on http://127.0.0.1:8080/
Hit Ctrl-C to quit.

When you run the command, you will see a message like the one above. Open http://127.0.0.1:8080/dashboard/ in your browser.

Interactive HITL optimization

[image: ../_images/hitl7.png]
You will see the main screen.

[image: ../_images/hitl8.png]
In this example, a study is created with the name “Human-in-the-loop Optimization.” Click on it. You will be directed to the page related to that study.

[image: ../_images/hitl9.png]
Click the third item in the sidebar. You will see a list of all trials.

[image: ../_images/hitl10.png]
For each trial, you can see its details such as RGB parameter values and importantly, the generated image based on these values.

[image: ../_images/hitl11.gif]
Let’s evaluate some of the images. For the first image, which is far from the “color of the sunset,” we rated it as “Bad.” For the next image, which is somewhat closer to the “color of the sunset,” we rated it as “So-so.” Continue this evaluation process for several trials. After evaluating about 30 trials, we should see an improvement.

We can review the progress of the HITL optimization through graphs and other visualizations.

[image: ../_images/hitl12.png]
Also, this image is an array of images up to 30 trials. The best ones are surrounded by thick lines.

[image: ../_images/hitl13.png]
By looking at the History plot, you can see that colors gradually get closer to the “color of the sunset”.

[image: ../_images/hitl14.png]
Additionally, by looking at the Parallel Coordinate plot, you can get an insight into the relationship between the evaluation and each hyperparameter.

Various other plots are available. Try exploring.

Script explanation

Let’s walk through the script we used for the optimization.

 1def suggest_and_generate_image(
 2 study: optuna.Study, artifact_store: FileSystemArtifactStore
 3) -> None:
 4 # 1. Ask new parameters
 5 trial = study.ask()
 6 r = trial.suggest_int("r", 0, 255)
 7 g = trial.suggest_int("g", 0, 255)
 8 b = trial.suggest_int("b", 0, 255)
 9
10 # 2. Generate image
11 image_path = f"tmp/sample-{trial.number}.png"
12 image = Image.new("RGB", (320, 240), color=(r, g, b))
13 image.save(image_path)
14
15 # 3. Upload Artifact
16 artifact_id = upload_artifact(trial, image_path, artifact_store)
17 artifact_path = get_artifact_path(trial, artifact_id)
18
19 # 4. Save Note
20 note = textwrap.dedent(
21 f"""\
22 ## Trial {trial.number}
23
24 ![generated-image]({artifact_path})
25 """
26)
27 save_note(trial, note)

In the suggest_and_generate_image function, a new Trial is obtained and new hyperparameters are suggested for that Trial. Based on those hyperparameters, an RGB image is generated as an artifact. The generated image is then uploaded to the Artifact Store of the Optuna, and the image is also displayed in the Dashboard’s Note. For more information on how to use the Note feature, please refer to the API Reference of save_note().

 1def start_optimization(artifact_store: FileSystemArtifactStore) -> NoReturn:
 2 # 1. Create Study
 3 study = optuna.create_study(
 4 study_name="Human-in-the-loop Optimization",
 5 storage="sqlite:///db.sqlite3",
 6 sampler=optuna.samplers.TPESampler(constant_liar=True, n_startup_trials=5),
 7 load_if_exists=True,
 8)
 9
10 # 2. Set an objective name
11 study.set_metric_names(["Looks like sunset color?"])
12
13 # 3. Register ChoiceWidget
14 register_objective_form_widgets(
15 study,
16 widgets=[
17 ChoiceWidget(
18 choices=["Good 👍", "So-so👌", "Bad 👎"],
19 values=[-1, 0, 1],
20 description="Please input your score!",
21),
22],
23)
24
25 # 4. Start Human-in-the-loop Optimization
26 n_batch = 4
27 while True:
28 running_trials = study.get_trials(deepcopy=False, states=(TrialState.RUNNING,))
29 if len(running_trials) >= n_batch:
30 time.sleep(1) # Avoid busy-loop
31 continue
32 suggest_and_generate_image(study, artifact_store)

The function start_optimization defines our loop for HITL optimization to generate an image resembling a sunset color.

	First, at #1, a Study of Optuna is created using TPESampler. Setting load_if_exists=True allows a Study to exist and be reused and the experiment to be resumed if it has already been created. The reason for setting constant_liar=True in TPESampler is to prevent similar hyperparameters from being sampled even if the trial is executed several times simultaneously (in this example, four times).

	At #2, the name of the objective that the ChoiceWidget targets is set using the study.set_metric_names [https://optuna.readthedocs.io/en/latest/reference/generated/optuna.study.Study.html#optuna.study.Study.set_metric_names] function. In this case, the name “Looks like sunset color?” is set.

	At #3, the ChoiceWidget is registered using the register_objective_form_widgets() function. This widget is used to ask users for evaluation to find the optimal hyperparameters. In this case, there are three options: “Good 👍”, “So-so👌”, and “Bad 👎”, each with an evaluation value of -1, 0, and 1, respectively. Note that Optuna minimizes objective values by default, so -1 is Good. Other widgets for evaluation are also available, so please refer to the API Reference for details.

	At #4, the suggest_and_generate_image function is used to generate an RGB image. Here, the number of currently running (TrialState.RUNNING) trials is periodically checked to ensure that four trials are running simultaneously. The reason why trials are executed in batches like this is that it generally may take a long time to obtain results from trial execution. By performing batch parallel processing, time waiting for the next results can be reduced. In this case, because generating the images is instant, it’s not necessary, but demonstrates practices.

 1def main() -> NoReturn:
 2 tmp_path = os.path.join(os.path.dirname(__file__), "tmp")
 3
 4 # 1. Create Artifact Store
 5 artifact_path = os.path.join(os.path.dirname(__file__), "artifact")
 6 artifact_store = FileSystemArtifactStore(artifact_path)
 7
 8 if not os.path.exists(artifact_path):
 9 os.mkdir(artifact_path)
10
11 if not os.path.exists(tmp_path):
12 os.mkdir(tmp_path)
13
14 # 2. Run optimize loop
15 start_optimization(artifact_store)

In the main function, at first, the locations of the Artifact Store is set.

	At #1, the FileSystemArtifactStore [https://optuna.readthedocs.io/en/stable/reference/generated/optuna.artifacts.FileSystemArtifactStore.html] is created, which is one of the Artifact Store options used in the Optuna. Artifact Store is used to store artifacts (data, files, etc.) generated during Optuna trials. For more information, please refer to the API Reference.

	At #2, start_optimization() function, which is described above, is called.

After that, two folders are created, artifact and tmp, and then start_optimization function is called to start the HITL optimization using Optuna.

Tutorial: Preferential Optimization

What is Preferential Optimization?

Preferential optimization is a method for optimizing hyperparameters, focusing of human preferences, by determining which trial is superior when comparing a pair.
It differs from human-in-the-loop optimization utilizing objective form widgets,
which relies on absolute evaluations, as it significantly reduces fluctuations in evaluators’ criteria, thus ensuring more consistent results.

In this tutorial, we’ll interactively optimize RGB values to generate a color resembling a “sunset hue”,
aligining with the problem setting in this tutorial.
Familiarity with the tutorial ob objective form widgets may enhance your understanding.

How to Run Preferential Optimization

In preferential optimization, two programs run concurrently: generator.py [https://github.com/optuna/optuna-examples/blob/main/dashboard/preferential-optimization/generator.py] performing parameter sampling and image generation,
and the Optuna Dashboard, offering a user interface for human evaluation.

[image: System Architecture]

First, ensure the necessary packages are installed by executing the following command in your terminal:

$ pip install "optuna>=3.3.0" "optuna-dashboard[preferential]>=0.13.0b1" pillow

Next, execute the Python script, copied from generator.py [https://github.com/optuna/optuna-examples/blob/main/dashboard/preferential-optimization/generator.py].

$ python generator.py

Then, launch Optuna Dashboard in a separate process using the following command.

$ optuna-dashboard sqlite:///example.db --artifact-dir ./artifact

Here, the storage is configured to sqlite:///example.db to retain Optuna’s trial history,
and --artifact-dir ./artifact is specified to store the artifacts (output images).

Listening on http://127.0.0.1:8080/
Hit Ctrl-C to quit.

Upon executing the command, a message like the above will appear.
Open http://127.0.0.1:8080/dashboard/ in your browser to view the Optuna Dashboard:

[image: GIF animation for preferential optimization]

Select the least sunset-like color from four trials to record human preferences.

Script Explanation

First, we specify the SQLite database URL and initialize the artifact store to house the images produced during the trial.

1STORAGE_URL = "sqlite:///example.db"
2artifact_path = os.path.join(os.path.dirname(__file__), "artifact")
3artifact_store = FileSystemArtifactStore(base_path=artifact_path)
4os.makedirs(artifact_path, exist_ok=True)

Within the main() function, creating dedicated Study and Sampler objects since preferential optimization relies on the comparison results between trials, lacking absolute evaluation values for each one.

Then, the component to be displayed on the human feedback pages is registered via register_preference_feedback_component().
The generated images are uploaded to the artifact store, and their artifact_id is stored in the trial user attribute (e.g., trial.user_attrs["rgb_image"]),
enabling the Optuna Dashboard to display images on the evaluation feedback page.

 1from optuna_dashboard import register_preference_feedback_component
 2from optuna_dashboard.preferential import create_study
 3from optuna_dashboard.preferential.samplers.gp import PreferentialGPSampler
 4
 5study = create_study(
 6 n_generate=4,
 7 study_name="Preferential Optimization",
 8 storage=STORAGE_URL,
 9 sampler=PreferentialGPSampler(),
10 load_if_exists=True,
11)
12# Change the component, displayed on the human feedback pages.
13# By default (component_type="note"), the Trial's Markdown note is displayed.
14user_attr_key = "rgb_image"
15register_preference_feedback_component(study, "artifact", user_attr_key)

Following this, we create a loop that continuously checks if new trials should be generated, awaiting human evaluation if not.
Within the while loop, new trials are generated if the condition should_generate() returns True.
For each trial, RGB values are sampled, an image is generated with these values, saved temporarily.
Then the image is uploaded to the artifact store, and finally, the artifact_id is stored to the key, which is specified via register_preference_feedback_component().

 1while True:
 2 # If study.should_generate() returns False, the generator waits for human evaluation.
 3 if not study.should_generate():
 4 time.sleep(0.1) # Avoid busy-loop
 5 continue
 6
 7 trial = study.ask()
 8 # Ask new parameters
 9 r = trial.suggest_int("r", 0, 255)
10 g = trial.suggest_int("g", 0, 255)
11 b = trial.suggest_int("b", 0, 255)
12
13 # Generate an image
14 image_path = os.path.join(tmpdir, f"sample-{trial.number}.png")
15 image = Image.new("RGB", (320, 240), color=(r, g, b))
16 image.save(image_path)
17
18 # Upload Artifact and set artifact_id to trial.user_attrs["rgb_image"].
19 artifact_id = upload_artifact(trial, image_path, artifact_store)
20 trial.set_user_attr(user_attr_key, artifact_id)

 Python Module Index

 o

 		 	

 		
 o	

 	
 	
 optuna_dashboard	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_trial() (optuna_dashboard.preferential.PreferentialStudy method)

 	add_trials() (optuna_dashboard.preferential.PreferentialStudy method)

 	
 	after_trial() (optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler method)

 	ask() (optuna_dashboard.preferential.PreferentialStudy method)

B

 	
 	before_trial() (optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler method)

 	
 	best_trials (optuna_dashboard.preferential.PreferentialStudy property)

C

 	
 	ChoiceWidget (class in optuna_dashboard)

 	
 	create_study() (in module optuna_dashboard.preferential)

D

 	
 	dict_to_form_widget() (in module optuna_dashboard)

E

 	
 	enqueue_trial() (optuna_dashboard.preferential.PreferentialStudy method)

G

 	
 	get_artifact_path() (in module optuna_dashboard.artifact)

 	
 	get_preferences() (optuna_dashboard.preferential.PreferentialStudy method)

 	get_trials() (optuna_dashboard.preferential.PreferentialStudy method)

I

 	
 	infer_relative_search_space() (optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler method)

L

 	
 	load_study() (in module optuna_dashboard.preferential)

M

 	
 	
 module

 	optuna_dashboard

O

 	
 	ObjectiveUserAttrRef (class in optuna_dashboard)

 	
 	
 optuna_dashboard

 	module

P

 	
 	preferences (optuna_dashboard.preferential.PreferentialStudy property)

 	
 	PreferentialGPSampler (class in optuna_dashboard.preferential.samplers.gp)

 	PreferentialStudy (class in optuna_dashboard.preferential)

R

 	
 	register_objective_form_widgets() (in module optuna_dashboard)

 	register_preference_feedback_component() (in module optuna_dashboard)

 	register_user_attr_form_widgets() (in module optuna_dashboard)

 	render_objective_form_widgets() (in module optuna_dashboard.streamlit)

 	
 	render_trial_note() (in module optuna_dashboard.streamlit)

 	render_user_attr_form_widgets() (in module optuna_dashboard.streamlit)

 	report_preference() (optuna_dashboard.preferential.PreferentialStudy method)

 	reseed_rng() (optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler method)

 	run_server() (in module optuna_dashboard)

S

 	
 	sample_independent() (optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler method)

 	sample_relative() (optuna_dashboard.preferential.samplers.gp.PreferentialGPSampler method)

 	save_note() (in module optuna_dashboard)

 	save_plotly_graph_object() (in module optuna_dashboard)

 	
 	set_user_attr() (optuna_dashboard.preferential.PreferentialStudy method)

 	should_generate() (optuna_dashboard.preferential.PreferentialStudy method)

 	SliderWidget (class in optuna_dashboard)

 	study_name (optuna_dashboard.preferential.PreferentialStudy property)

T

 	
 	TextInputWidget (class in optuna_dashboard)

 	to_dict() (optuna_dashboard.ChoiceWidget method)

 	(optuna_dashboard.ObjectiveUserAttrRef method)

 	(optuna_dashboard.SliderWidget method)

 	(optuna_dashboard.TextInputWidget method)

 	
 	trials (optuna_dashboard.preferential.PreferentialStudy property)

U

 	
 	user_attrs (optuna_dashboard.preferential.PreferentialStudy property)

W

 	
 	wsgi() (in module optuna_dashboard)

 _static/optuna-dashboard.gif
© omuen «®

© smssueck

P— = Sotmemdng = G o || @ e
1. pytorch_simple * 6. user-attr-tost
Py
7. Generate Snare Drum 9. Preferential Optimization
2%

2

_static/optuna-logo.png
@© O0OPTUNR

_static/jupyterlab-extension.png
sepytertab

Z Fle Edt View Run Kemel Tabs Setings Help
« N : o @ Laurer [G e g | + o
Fierflesbyname__ Q0
o - /sl
Name - Lostvoaes
= = B Logyscale @@ include PRUNED tials
companens 1ahours ago
W oab op namsaso | g
e 1 daysago . . .
D acionss 1 days ago History —— Best Value of pytorch_simple
D apiCiientts 11 days ago =
i 11 days ag ®
© aaeviiss days 300 Xeaxis: e
© dominateaTri oo || gy ® Number
© grpnuniss 1 daysag0
© nandirss 1 daysago O Datetime start 5l . L.
© ndoxts 1 daysag0 O Oatetime compists H .
O sewcnspacoss 11 daysago H
© s 11 daysag0 Marker ize 3,
O wiakiterts 11 days ago —_ o
© wiotisx scaysago
02
Toal
Intermediate values Hyperparameter Importance
o an i 5
o —e— trial #2
@ os o
3] o C_n ’
Simple. o1 ® Optuna Dashboard Widget

_static/minus.png

_static/vscode-extension.png
©

® € N = R L W& o

)
&

EXPLORER

v opTuNA-DAs.. [} B O @
aist

docs

e2e_tests

examples

hack

node_modules

optuna_dashboard

optuna_dashboard.egg-info

python_tests

rustlib

standalone_app

tmp

typescript_tests

venv

vscode .

-envrc

.eslintignore.

_eslintre.js

gitignore

-prettierignore

_prettierrc

.readthedocs.yaml

| CONTRIBUTING.md

db.sqlite3 | open to the side

@@ ovvvvvvvyyvyvyvyyvyvy

@& Dockerfile = Open Witt

Js jest.config,j Revealin Finder
TICENGERR [CReaibiedined e nal
M Makefile | Share

{} package-Io - select for Compare
{} package.jsc
¥ PULL_REQU
¥ pyproject.tc
® README.m(
£ requiremen
1 setup.cfg

> OUTLINE

> TIMELINE

Open Timeline

cut
Copy

Copy Path
Copy Relative Path

Rename...
Delete.

> RUST DEPENDI_OPen in Optuna Dashboard

b.sqlite3 X

pytorch_simple

History

Log y scale:

o

Filter state:

Complete

Pruned
X-axis:

@® Number

QO Datetime start

O Datetime complete

~a

X®R

erparameter Importance

®X
%®C
x%C
xoxC

“opout_IO} 0.08

a
®a

db.sqlite3 — optuna-dashboard

Objective Value

0.8

0.6

0.4

0.2

20

. O ®oo s
3 Sy
o
. . ®
.
.
.
. o
. .
* .
.
40 60 80
Trial
Intermediate values

100

© Objective Value
Best Value

—e— trial #0
—e— trial #1
—e— trial #2
—e— trial #3
—e— trial #4
—e— trial #7
—e— trial #10

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Optuna Dashboard

 		
 Getting Started

 		
 Installation

 		
 Prerequisite

 		
 Installing from PyPI

 		
 Installing from the source code

 		
 Command-line Interface

 		
 Using an official Docker image

 		
 Python Interface

 		
 Using Gunicorn or uWSGI server

 		
 Jupyter Lab Extension (Experimental)

 		
 Browser-only version (Experimental)

 		
 VS Code and code-server Extension (Experimental)

 		
 Google Colaboratory

 		
 API Reference

 		
 General APIs

 		
 optuna_dashboard.run_server

 		
 optuna_dashboard.wsgi

 		
 optuna_dashboard.save_note

 		
 optuna_dashboard.save_plotly_graph_object

 		
 optuna_dashboard.artifact.get_artifact_path

 		
 Human-in-the-loop

 		
 Form Widgets

 		
 Preferential Optimization

 		
 Streamlit

 		
 optuna_dashboard.streamlit.render_trial_note

 		
 optuna_dashboard.streamlit.render_objective_form_widgets

 		
 optuna_dashboard.streamlit.render_user_attr_form_widgets

 		
 Error Messages

 		
 Warning Messages

 		
 Human-in-the-loop optimization will not work with _CachedStorage in Optuna prior to v3.2.

 		
 set_objective_names() function is deprecated. Please use study.set_metric_names() instead.

 		
 upload_artifact() is deprecated. Please use optuna.artifacts.upload_artifact() instead.

 		
 FileSystemBackend is deprecated. Please use FileSystemArtifactStore instead.

 		
 Boto3Backend` is deprecated. Please use Boto3ArtifactStore instead.

 		
 Tutorials

 		
 Tutorial: Human-in-the-loop Optimization using Objective Form Widgets

 		
 What is human-in-the-loop optimization?

 		
 Main tutorial

 		
 Tutorial: Preferential Optimization

 		
 What is Preferential Optimization?

 		
 How to Run Preferential Optimization

 		
 Script Explanation

_images/browser-app.gif
Optuna Dashboard (Wasm ver)

Q Soarenstuty = Sonascondng +

@

Load an Optuna Sirage
rag your SQLted le hereor cik o rowsa,

_images/hitl1.png
Evaluation
Human Optuna

& orN

w2

Artifact (Image, Music, etc)

_images/anim.gif
2 e o

> Prtrni Optmzsin 1)
Which trial is the worst?

Tralo

Tral2

Tral3

_images/hitl10.png
x 3 & <

8 Trials

Trial 0

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Trial 6

Trial 7

Preferential Optimization (id=1)

Trial O (trial_id=1)

Value
Intermediate Values

Parameter

Started At

User Attributes

Note

Trial O

None

b 187
g 243
r95

Mon Apr 03 2023 10:29:53 GMT+0900 (B A{ZHERF)

_images/hitl11.gif
> Human-in-the-loop Optimization (id=1)

4 Trials | Trial 0 (trial_id=1)

Note

Trial 0

Set Objective Value

Looks like sunset color? - Please input your score!

® Good & O So-sod (O Bad ¥

FAIL TRIAL

_images/hitl12.png
History

X-axis:

(® Number
O Datetime start

(O Datetime complete

Looks like sunset color?

0.5

-0.5

]

oo ooo0oo

Looks like sunset color?
Best Value

_images/hitl2.jpeg

_images/hitl3.jpeg

_images/hitl13.png

_images/hitl14.png
Parallel Coordinate

Looks like sunset color?
Param b
Param g

Param r

255

255

255

Looks like sunset color?
1

0.5

-0.5

_images/hitl6.png
b

i Database
main.py Optuna Dashboard
Artifact Store ¢ pin
<4 - = m]
- -— ‘
[N—
C - W
Artifact DB
— Store (db.sqlite3) a
(/artifact)

N—

_images/hitl7.png
Q0 @

Thank you for testing the new Ul! We would appreciate it if you could send us the feedback via this post on
GitHub Discussions.

Q Search study ’ ‘ = Sort ascending ~ C RELOAD CREATE

1. Human-in-the-loop Optimization
Direction: MINIMIZE

_images/hitl4.png
main.py Database

Optuna Dashboard

Artifact Store
<4 - = m m
- ‘
—) N’
m - W
Artifact DB
——— Store (db.sqlite3)
(/artifact)

N—

_images/hitl5.png
2

main.py Database Optuna Dashboard
1 Artifact Store
<4 - = m]
- -_— - ;‘
)
™~ - W
Artifact DB
N—

Store (db.sqlite3)
3 (/artifact)

N—

_images/hitl9.png
A > Preferential Optimization (id=1)

w ~J® Logyscale Include PRUNED trials
4
click
History
& X-axis: 3
2] (® Number
.
O Datetime start o
S
(O Datetime complete g
[}
X
Z, 1
o
S
0
W] Trial
() Hyperparameter Importance Best Trials
4
X

_images/jupyterlab-extension.png
sepytertab

Z Fle Edt View Run Kemel Tabs Setings Help
« N : o @ Laurer [G e g | + o
Fierflesbyname__ Q0
o - /sl
Name - Lostvoaes
= = B Logyscale @@ include PRUNED tials
companens 1ahours ago
W oab op namsaso | g
e 1 daysago . . .
D acionss 1 days ago History —— Best Value of pytorch_simple
D apiCiientts 11 days ago =
i 11 days ag ®
© aaeviiss days 300 Xeaxis: e
© dominateaTri oo || gy ® Number
© grpnuniss 1 daysag0
© nandirss 1 daysago O Datetime start 5l . L.
© ndoxts 1 daysag0 O Oatetime compists H .
O sewcnspacoss 11 daysago H
© s 11 daysag0 Marker ize 3,
O wiakiterts 11 days ago —_ o
© wiotisx scaysago
02
Toal
Intermediate values Hyperparameter Importance
o an i 5
o —e— trial #2
@ os o
3] o C_n ’
Simple. o1 ® Optuna Dashboard Widget

_images/hitl8.png
Q0 @

Thank you for testing the new Ul! We would appreciate it if you could send us the feedback via this post on
GitHub Discussions.

Q Search study = Sort ascending v C RELOAD CREATE

1. Human-in-the-loop Optimization
Direction: MINIMIZE

click

_images/vscode-extension.png
©

® € N = R L W& o

)
&

EXPLORER

v opTuNA-DAs.. [} B O @
aist

docs

e2e_tests

examples

hack

node_modules

optuna_dashboard

optuna_dashboard.egg-info

python_tests

rustlib

standalone_app

tmp

typescript_tests

venv

vscode .

-envrc

.eslintignore.

_eslintre.js

gitignore

-prettierignore

_prettierrc

.readthedocs.yaml

| CONTRIBUTING.md

db.sqlite3 | open to the side

@@ ovvvvvvvyyvyvyvyyvyvy

@& Dockerfile = Open Witt

Js jest.config,j Revealin Finder
TICENGERR [CReaibiedined e nal
M Makefile | Share

{} package-Io - select for Compare
{} package.jsc
¥ PULL_REQU
¥ pyproject.tc
® README.m(
£ requiremen
1 setup.cfg

> OUTLINE

> TIMELINE

Open Timeline

cut
Copy

Copy Path
Copy Relative Path

Rename...
Delete.

> RUST DEPENDI_OPen in Optuna Dashboard

b.sqlite3 X

pytorch_simple

History

Log y scale:

o

Filter state:

Complete

Pruned
X-axis:

@® Number

QO Datetime start

O Datetime complete

~a

X®R

erparameter Importance

®X
%®C
x%C
xoxC

“opout_IO} 0.08

a
®a

db.sqlite3 — optuna-dashboard

Objective Value

0.8

0.6

0.4

0.2

20

. O ®oo s
3 Sy
o
. . ®
.
.
.
. o
. .
* .
.
40 60 80
Trial
Intermediate values

100

© Objective Value
Best Value

—e— trial #0
—e— trial #1
—e— trial #2
—e— trial #3
—e— trial #4
—e— trial #7
—e— trial #10

_images/optuna-dashboard.gif
© omuen «®

© smssueck

P— = Sotmemdng = G o || @ e
1. pytorch_simple * 6. user-attr-tost
Py
7. Generate Snare Drum 9. Preferential Optimization
2%

2

_images/system-architecture.png
generator.py Database +una Dashboar
Artifact Store Optina Dashboard

=

-
-m-

Artfact B
Store (example.db)
(Jartfact)

I prefer this color over that one!

_static/file.png

_static/browser-app.gif
Optuna Dashboard (Wasm ver)

Q Soarenstuty = Sonascondng +

@

Load an Optuna Sirage
rag your SQLted le hereor cik o rowsa,

